• Title/Summary/Keyword: plastic behaviour

Search Result 346, Processing Time 0.019 seconds

Reliability analysis of the nonlinear behaviour of stainless steel cover-plate joints

  • Averseng, Julien;Bouchair, Abdelhamid;Chateauneuf, Alaa
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.45-55
    • /
    • 2017
  • Stainless steel exhibits high ductility and strain hardening capacity in comparison with carbon steel widely used in constructions. To analyze the particular behaviour of stainless steel cover-plate joints, an experimental study was conducted. It showed large ductility and complex failure modes of the joints. A non-linear finite element model was developed to predict the main parameters influencing the behaviour of these joints. The results of this deterministic model allow us to built a meta-model by using the quadratic response surface method, in order to allow for efficient reliability analysis. This analysis is then applied to the assessment of design formulae in the currently used codes of practice. The reliability analysis has shown that the stainless steel joint design according to Eurocodes leads to much lower failure probabilities than the Eurocodes target reliability for carbon steel, which incites revising the resisting model evaluation and consequently reducing stainless steel joint costs. This approach can be used as a basis to evaluate a wide range of steel joints involving complex failure modes, particularly bearing failure.

Stress-assisted oxidation behaviour of inconel 52M/316 austenitic stainless-steel dissimilar weld joints in a simulated pressurised water reactor

  • Xu, Youwei;Yang, Binhui;Shi, Yu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3778-3787
    • /
    • 2022
  • The stress-assisted oxidation behaviour of Inconel 52 M/316 austenitic stainless-steel (SS) dissimilar weld joints (DMWJ) in a simulated pressurised water reactor environment was investigated. A corrosion galvanic couple formed between the Inconel 52 M and 316 SS due to differences in their nonferrous metal content. The electric field from the corrosion couple attracted metal cations (e.g. Fe2+, Cr3+) to the Inconel 52 M that were deposited as FeCr2O4. An additional corrosion galvanic couple was generated due to variations in the plastic deformation of the DMWJ. The superposition of electric fields from the different couples resulted in ridge-like oxide depositions in the fusion zone.

DEVELOPMENT OF NUMERICAL MODEL FOR THE VISCO-PLASTIC BEHAVIOUR OF THE JOINTED ROCK MASS REINFORCED BY ROCKBOLTS (록볼트로 보강한 절리암반의 점소성거동에 관한 수치해석 모델 개발)

  • Lee, Yeon-Gyu;Lee, Jeong-In;Jo, Tae-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.149-157
    • /
    • 1994
  • In this study two dimensional visco-plastic finite element model capable of handling the multi-step excavation was developed for investigating the effect of excavation support sequences on the behavior of underground openings in the jointed rock mass. First, the finite element model which is capable of handling the multi-step excavation is developed and verified. And then the model is combined with visco-plastic joint model. Ubiquitous joint pattern was considered in the model and joint properties in cach set were assumed to be indentical. Passive, full-grouted rockbolts were cosidered in the numerical model. The visco-plastic deformations of joints and rockbolts were assumed to be governed by Mohr-Conlomb and von Mises yield criteria, respectively. With the ability of removing elements, the model can simulate the multi-step excavation-suppport sequences. The reliability and applicability of the model to the stability analysis for the underground excavation in pratice was checked by simulating the behavior of underground crude oil storage caverns under construction.

  • PDF

Iterative global-local approach to consider the local effects in dynamic analysis of beams

  • Erkmen, R. Emre;Afnani, Ashkan
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.501-522
    • /
    • 2017
  • This paper introduces a numerical procedure to incorporate elasto-plastic local deformation effects in the dynamic analysis of beams. The appealing feature is that simple beam type finite elements can be used for the global model which needs not to be altered by the localized elasto-plastic deformations. An overlapping local sophisticated 2D membrane model replaces the internal forces of the beam elements in the predefined region where the localized deformations take place. An iterative coupling technique is used to perform this replacement. Comparisons with full membrane analysis are provided in order to illustrate the accuracy and efficiency of the method developed herein. In this study, the membrane formulation is able to capture the elasto-plastic material behaviour based on the von Misses yield criterion and the associated flow rule for plane stress. The Newmark time integration method is adopted for the step-by-step dynamic analysis.

An Elasto-Plastic Constitutive Law for Modeling the Shear Behavior of Rough Rock Joints (거친 절리면의 전단거동 해석을 위한 탄소성 구성법칙)

  • 이연규;이정인
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.234-248
    • /
    • 1998
  • This paper presents a new constitutive model for numerical modeling the shear behaviour of rough rock joints. The model incorporates the dilatancy of joints on the basis of elasto-plastic theory. Barton's empirical shear strength formular are adopted in the formulation process. The mobilized JRC concept is evoked to address the shear strength hardening and sofrening phenomena. The mobilized JRC in the pre- and post-peak range is approximated by assuming that the variation of JRC is a function of tangential plastic work. Discrete finite joint element is used to implement the proposed constitutive model. The model is validated by the numerical direct shear test on a single joint which is subjected to different boundary conditions. The test results are in good agreement with the experimental observations reported by other authors. The numerical tests also exhibit that the proposed model can simulate the salient features envisaged in the behaviour of rough rock joints.

  • PDF

A Study of the Buckling/plastic Collapse Behaviour of Ship Plates with Secondary Buckling (2차좌굴을 포함하는 선체판의 탄소성거동에 관한 연구)

  • Ko, Jae-Yong;Lee, Don-Chul;Yu, Young-Hun;Cho, Young-Tae;Park, Sung-Hyeon
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.50-54
    • /
    • 2002
  • The plate bucking is very important design criteria when the ship is composed of high tensile steel plates. The structures under the action of excessive exhibit local failure associated with bucking until they reach the ultimate limit state as a whole. Precise assessment of the behaviour of plate above primary buckling load is important. In this connection, series of elastic plastic large deflection analyses are performed on rectangular plates with aspect ratio 1.4 applying the finite element method. In this paper, the buckling/plastic collapse behavior of ship plates with secondary buckling is investigated. It has found that the other deflection componentes also increase with the increase of compressive load above the primary buckling load.

Determination of collapse safety of shear wall-frame structures

  • Cengiz, Emel Yukselis;Saygun, Ahmet Isin
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.135-148
    • /
    • 2007
  • A new finite shear wall element model and a method for calculation of 3D multi-storied only shear walled or shear walled - framed structures using finite shear wall elements assumed ideal elasto - plastic material are developed. The collapse load of the system subjected to factored constant gravity loads and proportionally increasing lateral loads is calculated with a method of load increments. The shape functions over the element are determined as a cubic variation along the story height and a linear variation in horizontal direction because of the rigid behavior of the floor slab. In case shear walls are chosen as only one element in every floor, correct solutions are obtained by using this developed element. Because of the rigid behavior of the floor slabs, the number of unknowns are reduced substantially. While in framed structures, classical plastic hinge hypothesis is used, in nodes of shear wall elements when vertical deformation parameter is exceeded ${\varepsilon}_e$, this node is accepted as a plastic node. While the system is calculated with matrix displacement method, for determination of collapse safety, plastic displacements and plastic deformations are taken as additional unknowns. Rows and columns are added to the system stiffness matrix for additional unknowns.

Undrained Behaviour of Granular Soil Using Single Work-Hardening Model (단일항복면 구성모델에 의한 입상토의 비배수거동해석)

  • Jeong, Jin Seob;Kim, Chan Kee;Lee, Moon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.177-189
    • /
    • 1992
  • This paper aims at developing a finite element program to predict undrained behavior of granular soil by using elasto-plastic constitutive model. A computer program developed by authors based on Christian's techniques for undrained behaviour of the soil has been employed coupled with Lade's single work-hardening model. Modification of the program for drained behaviour, considering restraint of volumetric strain, makes it possible to analize the underained behaviour. To validate the newly developed program, comparison of results was performed between numerical values and experimental data for Baekma river sand as well as Sacrmento river sand studied by Seed and Lee. The program is evaluated to have high accuracy.

  • PDF

A Study on the Analysis of Steel Bracing Behaviour Subjected to Cyclic Loads (반복하중을 받는 강재 브레이싱의 거동에 관한 해석적 연구)

  • 구민세;김병석;김일곤
    • Computational Structural Engineering
    • /
    • v.2 no.3
    • /
    • pp.69-75
    • /
    • 1989
  • The primary purpose of using bracings is to improve the lateral rigidity of main structural system, i.e., columns and beams, by reinforciing them with much smaller members. In conventional design methods brackings are considered as tension-only members, since difficulties arise in the analysis when the P-.DELTA. effects and post-buckling behaviour of the bracing members are taken into account. This is particulary true fox X-bracings. Recently, however, both analytical and experimental studies have been conducted to investigate the more precise and real behaviour of bracing members, especially for the nonlinear and plastic behaviour under cyclic loads. In this study, an analytical model is proposed to investigate the nonlinear behavior of steel bracing members subjected to cyclic loads. Results of the analysis were compared with previous experimental results, and good agreements were obtained between these results.

  • PDF

Alternative approach for reproducing the in-plane behaviour of rubble stone walls

  • Tarque, Nicola;Camata, Guido;Benedetti, Andrea;Spacone, Enrico
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.29-38
    • /
    • 2017
  • Stone masonry is one of the oldest construction types due to the natural and free availability of stones and the relatively easy construction. Since stone masonry is brittle, it is also very vulnerable and in the case of earthquakes damage, collapses and causalities are very likely to occur, as it has been seen during the last Italian earthquake in Amatrice in 2016. In the recent years, some researchers have performed experimental tests to improve the knowledge of the behaviour of stone masonry. Concurrently, there is the need to reproduce the seismic behaviour of these structures by numerical approaches, also in consideration of the high cost of experimental tests. In this work, an alternative simplified procedure to numerically reproduce the diagonal compression and shear compression tests on a rubble stone masonry is proposed within the finite element method. The proposed procedure represents the stone units as rigid bodies and the mortar as a plastic material with compression and tension inelastic behaviour calibrated based on parametric studies. The validation of the proposed model was verified by comparison with experimental data. The advantage of this simplified methodology is the use of a limited number of degrees of freedom which allows the reduction of the computational time, which leaves the possibility to carry out parametric studies that consider different wall configurations.