• Title/Summary/Keyword: plasma synthesis

Search Result 464, Processing Time 0.028 seconds

The Synthesis Method of Tin Dioxide Nanoparticles by Plasma-Assisted Electrolysis Process and Gas Sensing Property

  • Kim, Tae Hyung;Song, Yoseb;Lee, Chan-Gi;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.351-356
    • /
    • 2017
  • Tin dioxide nanoparticles are prepared using a newly developed synthesis method of plasma-assisted electrolysis. A high voltage is applied to the tin metal plate to apply a high pressure and temperature to the synthesized oxide layer on the metal surface, producing nanoparticles in a low concentration of sulfuric acid. The particle size, morphology, and size distribution is controlled by the concentration of electrolytes and frequency of the power supply. The as-prepared powder of tin dioxide nanoparticles is used to fabricate a gas sensor to investigate the potential application. The particle-based gas sensor exhibits a short response and recovery time. There is sensitivity to the reduction gas for the gas flowing at rates of 50, 250, and 500 ppm of $H_2S$ gas.

Synthesis of Ultrafine Zr Based Alloy Powder by Plasma Arc Discharge Process

  • Lee, Gil-Geun;Park, Je-Shin;Kim, Won-Baek
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.420-421
    • /
    • 2006
  • In the present study, ultrafined Zr-V-Fe based alloy powder prepared by a plasma arc discharge process with changing process parameters. The chemical composition of synthesized powder was strongly influenced by the process parameters, especially the hydrogen volume fraction in the powder synthesis atmosphere. The synthesized powder had an average particle size of 50 nm. The synthesized Zr-V-Fe based particles had a shell-core structure composed of metal in the core and oxidse in the shell.

  • PDF

Preparation of Synthesis Gas from Methane in a Capacitive rf Discharge (용량성 rf 플라즈마를 이용한 메탄으로부터의 합성가스 제조)

  • Song, Hyung Keun;Choi, Jae-Wook;Lee, Hwaung;Kim, Seung-Soo;Na, Byung-Ki
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.138-144
    • /
    • 2006
  • Conversion of methane to synthesis gas in a capacitive rf plasma at low pressure was experimentally studied. In this plasma, electrons which had sufficient energy-level collided with the molecules of methane or oxygen-containing gas, which were than activated and converted to synthesis gas. The effect of input power, various oxygen-containing gas and composition of the gas mixture were investigated. The conversion of methane reached up to 100%. In all cases, hydrogen and carbon oxide were produced as primary products, and other compounds was generated. The conversion of methane and the yield of hydrogen and carbon oxides were increased with increasing the input power. Depending on the oxygen-containing gases, the composition of synthesis gas was varied.

  • PDF

Effect of Oxygen for Diamond Film Synthesis with C-Hexane in Microwave Plasma Enhanced CVD Process

  • Han, Sang-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.983-989
    • /
    • 2012
  • The purpose of this paper is to decide the optimum synthesis conditions of polycrystalline diamond films according to the ratio of gas mixture. Diamond films were deposited with cyclo-hexane as a carbon precursor by the microwave plasma enhanced chemical vapor deposition process. The optimum oxygen ratio to cyclo-hexane was reached about 125 % under the fixed 0.3% c-hexane in hydrogen. Oxygen plays a role in etching the graphitic components of carbon sp2 bond effectively. By OES measurement, the best synthesis conditions found out about 12.5 % and 15.75 %, which is the emission intensity ratios of CH(B-X) and $H{\beta}$ on $H{\alpha}$, respectively. Also, the electron temperature was similar about 5,000 to 5,200 K in this work.

Analysis of characteristics of discharge in liquid

  • Kim, Ju-Sung;Min, Boo-Ki;Hong, Young-June;Kang, Seong-Oun;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.209.2-209.2
    • /
    • 2016
  • Up to now, Plasma applications are thought as a leading technology in industrial, chemical and even medical and biological field. Especially, Due to direct discharge in liquid with reaction in ambient solution, plasma in liquid is useful plasma technology. Such as electro-surgery, water purification, radical generation for synthesis. For using those plasma applications efficiently, plasma characteristics should be understood in advance. But discharge in liquid is not much well-known about its characteristics. And plasma discharge in solution is difficult to generate and analysis due to electrolysis, vaporization and radical generation. So, We make stable plasma discharge in solution(saline 0.9%) without input gas. We also analyze new type of plasma source in thermal and electrochemical view. And we check characteristics of plasma in liquid. For example, plasma density and radical density(OH) with optical emission, thermal energy with thermometer, electrical energy with oscilloscope and so on. And we try to explain the bubble and plasma formation with circuit analysis.

  • PDF

NEW APPLICATIONS OF R.F. PLASMA TO MATERIALS PROCESSING

  • Akashi, Kazuo;Ito, Shigru
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.371-378
    • /
    • 1996
  • An RF inductively coupled plasma (ICP) torch has been developed as a typical thermal plasma generator and reactor. It has been applied to various materials processings such as plasma flash evaporation, thermal plasma CVD, plasma spraying, and plasma waste disposal. The RF ICP reactor has been generally operated under one atmospheric pressure. Lately the characteristics of low pressure RF ICP is attracting a great deal of attention in the field of plasma application. In our researches of RF plasma applications, low pressure RF ICP is mainly used. In many cases, the plasma generated by the ICP torch under low pressure seems to be rather capacitive, but high density ICP can be easily generated by our RF plasma torch with 3 turns coil and a suitable maching circuiit, using 13.56 MHz RF generator. Plasma surface modification (surface hardening by plasma nitriding and plasma carbo-nitriding), plasma synthesis of AIN, and plasma CVD of BN, B-C-N compound and diamond were practiced by using low pressure RF plasma, and the effects of negative and positive bias voltage impression to the substrate on surface modification and CVD were investigated in details. Only a part of the interesting results obtained is reported in this paper.

  • PDF

The comparative study of pure and pulsed DC plasma sputtering for synthesis of nanocrystalline Carbon thin films

  • Piao, Jin Xiang;Kumar, Manish;Javid, Amjed;Wen, Long;Jin, Su Bong;Han, Jeon Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.320-320
    • /
    • 2016
  • Nanocrystalline Carbon thin films have numerous applications in different areas such as mechanical, biotechnology and optoelectronic devices due to attractive properties like high excellent hardness, low friction coefficient, good chemical inertness, low surface roughness, non-toxic and biocompatibility. In this work, we studied the comparison of pure DC power and pulsed DC power in plasma sputtering process of carbon thin films synthesis. Using a close field unbalanced magnetron sputtering system, films were deposited on glass and Si wafer substrates by varying the power density and pulsed DC frequency variations. The plasma characteristics has been studied using the I-V discharge characteristics and optical emission spectroscopy. The films properties were studied using Raman spectroscopy, Hall effect measurement, contact angle measurement. Through the Raman results, ID/IG ratio was found to be increased by increasing either of DC power density and pulsed DC frequency. Film deposition rate, measured by Alpha step measurement, increased with increasing DC power density and decreased with pulsed DC frequency. The electrical resistivity results show that the resistivity increased with increasing DC power density and pulsed DC frequency. The film surface energy was estimated using the calculated values of contact angle of DI water and di-iodo-methane. Our results exhibit a tailoring of surface energies from 52.69 to $55.42mJ/m^2$ by controlling the plasma parameters.

  • PDF

Synthesis and characterization of Y2O3 : Eu3+ red nano phosphor powders using RF thermal plasma (RF 열플라즈마를 이용한 Y2O3:Eu3+ 적색 나노 형광체 분말 합성)

  • Lee, Seung-Yong;Koo, Sang-Man;Hwang, Kwang-Taek;Kim, Jin-Ho;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.272-279
    • /
    • 2015
  • $Y_2O_3:Eu^{3+}$ is an excellent red-emitting phosphor, which has been widely used for display devices due to highly luminescent property and chemical stability. In this study, $Y_2O_3:Eu^{3+}$ red phosphors were prepared using the solid state reaction and RF thermal plasma synthesis. The particle size of $Y_2O_3:Eu^{3+}$ phosphors obtained by the solid state reaction varied from 10 to $20{\mu}m$, and 30~100 nanometer sized $Y_2O_3:Eu^{3+}$ particles were obtained from a liquid form of raw material through RF thermal plasma synthesis without an additional heat treatment. Photoluminescence measurements of the obtained $Y_2O_3:Eu^{3+}$ particles showed a red emission peak at 611 nm ($^5D_0{\rightarrow}^7F_2$). PL intensity of red nano phosphors prepared by RF thermal plasma synthesis was comparable to that of red phosphors prepared by the solid state reaction, indicating that nano-sized $Y_2O_3:Eu^{3+}$ red phosphors could be successfully synthesized using one-step process of RF thermal plasma.

Modulation of the Somatotropic Axis in Periparturient Dairy Cows

  • Kim, Jin Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.147-154
    • /
    • 2014
  • This review focuses on modulation of growth hormone (GH) and its downstream actions on periparturient dairy cows undergoing physiological and metabolic adaptations. During the periparturient period, cows experience a negative energy balance implicating that the feed intake does not meet the total energy demand for the onset of lactation. To regulate this metabolic condition, key hormones of somatotropic axis such as GH, IGF-I and insulin must coordinate adaptations required for the preservation of metabolic homeostasis. The hepatic GHR1A transcript and GHR protein are reduced at parturition, but recovers on postpartum. However, plasma IGF-I concentration remains low even though hepatic abundance of the GHR and IGF-I mRNA return to pre-calving value. This might be caused by alternation in IGFBPs and ALS genes, which consequently affect the plasma IGF-I stability. Plasma insulin level declines in a parallel manner with the decrease in plasma IGF-I after parturition. Increased GH stimulates the lipolytic effects and hepatic glucose synthesis to meet the energy requirement for mammary lactose synthesis, suggesting that GH antagonizes insulin-dependent glucose uptake and attenuates insulin action to decrease gluconeogenesis.

Gallium Nitride Nanoparticle Synthesis Using Non-thermal Plasma with N2 Gas

  • Yu, Gwang-Ho;Kim, Jeong-Hyeong;Yu, Sin-Jae;Ryu, Hyeon;Seong, Dae-Jin;Sin, Yong-Hyeon;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.236.1-236.1
    • /
    • 2014
  • Compounds of Ga, such as gallium oxide (Ga2O3) and gallium nitride (GaN), are of interest due to its unique properties in semiconductor application. In particular, GaN has the potentially application for optoelectronic device such as light-emitting diodes (LEDs) and laser diodes (LDs) [1]. Nanoparticle is an interesting material due to its unique properties compared to the bulk equivalents. In this report, we develop a synthesizing method for gallium nitride nanoparticle using non-thermal plasma. For gallium source, the gallium is heated by thermal conduction of tungsten boat which is heated by eddy current induced from RF current in antenna. Nitrogen source for nanoparticle synthesis are from inductively coupled plasma with N2 gas. The synthesized nano particles are analyzed using field-emission scanning microscope (FESEM), transmission electron microscope (TEM) and x-ray photoelectron spectroscopy (XPS). The synthesized particles are investigated and discussed in wide range of experiment conditions such as flow rate, pressure and RF power.

  • PDF