• 제목/요약/키워드: plasma spray technique

검색결과 29건 처리시간 0.023초

Optimal Condition of Hydroxyapatite Powder Plasma Spray on Ti6Al4V Alloy for Implant Applications

  • Ahn, Hyo-Sok;Lee, Yong-Keun
    • 한국재료학회지
    • /
    • 제22권4호
    • /
    • pp.211-214
    • /
    • 2012
  • Optimal conditions for HA plasma spray-coating on Ti6Al4V alloy were investigated in order to obtain enhanced bone-bonding ability with Ti6Al4V alloy. The properties of plasma spray coated film were analyzed by SEM, XRD, surface roughness measurement, and adhesion strength test because the film's transformed phase and crystallinity were known to be influential to bone-bonding ability withTi6Al4V alloy. The films were formed by a plasma spray coating technique with various combinations of plasma power, spray distance, and auxiliary He gas pressure. The film properties were analyzed in order to determine the optimal spray coating parameters with which we will able to achieve enhanced bone-bonding ability with Ti6Al4V alloy. The most influential coating parameter was found to be the plasma spray distance to the specimen from the spray gun nozzle. Additionally, it was observed that a relatively higher film crystallinity can be obtained with lower auxiliary gas pressure. Moderate adhesion strength can be achievable at minimal plasma power. That is, adhesion strength is minimally dependent on the plasma power. The combination of shorter spray distance, lower auxiliary gas pressure, and moderate spray power can be recommended as the optimal spray conditions. In this study, optimal plasma spray coated films were formed with spray distance of 70 mm, plasma current of 800 A, and auxiliary gas pressure of 60 psi.

Preparation of Ultrafine $SnO_2$ Powders by Spray-ICP Technique

  • Kim, Jung-Hwan;Kim, Young-Do;Shin, Kun-Chul;Park, Jong-Hyun
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1998년도 PROCEEDINGS OF THE 14TH KACG TECHNICAL MEETING AND THE 5TH KOREA-JAPAN EMGS (ELECTRONIC MATERIALS GROWTH SYMPOSIUM)
    • /
    • pp.65-70
    • /
    • 1998
  • The Spray-ICP technique uses the ICP(Inductively Coupled Plasma) of ultra-high temperature which is produced by r.f power. The ICP is well-kwown as a clean heat source for the preparation of pure ceramic particles because the ICP is a electrodeless-thermal plasma without contamination. In this study,{{{{ { SnO}_{2 } }}}} particles were sythesized from metal salt solution by Spray-ICP technique. The effects of concentration of solution, collecting location of powders were investicated. The prepared {{{{ { SnO}_{2 } }}}} particles from each concentration of solution had same crystalline phase(tetragonal {{{{ { SnO}_{2 } }}}}) a nd the mean size decreased in proportion to the increase of solution concentration. Each {{{{ { SnO}_{2 } }}}} p owders collector in reactor and electrostatic collector had same crystalline phase and morphologies. The mean size of {{{{ { SnO}_{2 } }}}} p articles prepared by Spray-ICP technique was below 30nm.

  • PDF

Evaluation of Plasma Spray Hydroxy Apatite coatings on Metallic Materials

  • Take, S.;Mitsui, K.;Kasahara, M.;Sawai, R.;Izawa, S.;Nakayama, M.;Itoi, Y.
    • Corrosion Science and Technology
    • /
    • 제6권6호
    • /
    • pp.286-290
    • /
    • 2007
  • Biocompatible Hydroxy apatite (HAp) coatings on metallic substrate by plasma spray techniques have been developed. Long-term credibility of plasma spray HAp coatings has been evaluated in physiological saline by electrochemical measurements. It was found that the corrosion resisitance of SUS316L based HAp/Ti conbined coatings was excellent even after more than 10 weeks long-term immersion. It was shown that postal heat treatment improved both the crystallinity and corrosion resistance of HAp. By lowering cooling rate during heat treatment process, less cracks produced in HAp coating layer, which lead to higher credibility of HAp during immersion in physiological saline. The ICP results showed that the dissolution level of substrate metallic ions was low and HAp coatings produced in this research can be acceptable as biocompatible materials. Also, the concentration of dissolved ions from HAp coatings with postal heat treatment was lower compared to those from samples without postal heat treatment. The adherence of HAp coatings with Ti substrate and other mechanical properties were also assessed by three-point bending test. The poor adhesion of HAp coating to titanium substrate can be improved by introducing a plasma spray titanium intermediate layer.

Warm spray를 이용한 알루미늄-알루미나 복합 코팅층의 제조 및 특성 (Manufacturing and Properties of Al-Al2O3 Composite Coating Layer Using Warm Spray Process)

  • 권의표;이종권
    • 한국재료학회지
    • /
    • 제27권7호
    • /
    • pp.374-380
    • /
    • 2017
  • Properties of coatings produced by warm spray were investigated in order to utilize this technique as a repair method for Al tire molds. $Al-(0-10%)Al_2O_3$ composite powder was sprayed on Al substrate by warm spraying, and the microstructure and mechanical properties of the composite coating layer were investigated. For comparative study, the properties of the coating produced by plasma spray, which is a relatively high-temperature spraying process, were also investigated. The composite coating layers produced by the two spray techniques exhibited significantly different morphology, perhaps due to their different process temperatures and velocities of particles. Whereas the $Al_2O_3$ particles in the warm sprayed coating layer maintained their initial shape before the spray, flattened and irregular shape $Al_2O_3$ particles were distributed in the plasma sprayed coating layer. The coating layer produced by warm spray showed significantly higher adhesive strength compared to that produced by plasma spray. Hardness was also higher in the warm sprayed coating layer compared to the plasma sprayed one. Moreover, with increasing the fraction of $Al_2O_3$, hardness gradually increased in both spray coating processes. In conclusion, an $Al-Al_2O_3$ composite coating layer with good mechanical properties was successfully produced by warm spray.

Interaction study of molten uranium with multilayer SiC/Y2O3 and Mo/Y2O3 coated graphite

  • S.K. Sharma;M.T. Saify;Sanjib Majumdar;Palash K. Mollick
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1855-1862
    • /
    • 2023
  • Graphite crucibles are used for melting uranium and its alloys in VIM furnace. Various coating materials namely Al2O3, ZrO2, MgO etc. are applied on the inner surface of the crucibles using paint brush or thermal spray technique to mitigate U-C interaction. These leads to significant amount of carbon pick-up in uranium. In this study, the attempts are made to develop multilayer coatings comprising of SiC/Y2O3 and Mo/Y2O3 on graphite to study the feasibility of minimizing U-C interaction. The parameters are optimized to prepare SiC coating of about 70㎛ thickness using CVD technique on graphite coupons and subsequently Y2O3 coating of about 250㎛ thickness using plasma spray technique. Molybdenum and Y2O3 layers were deposited using plasma spray technique with 70㎛ and 250㎛ thickness, respectively. Interaction studies of the coated graphite with molten uranium at 1450℃ for 20 min revealed that Y2O3 coating with SiC interlayer provides physical barrier for uranium-graphite interaction, however, this led to the physical separation of coating layer. Y2O3 coating with Mo interlayer provided superior barrier effect showing no degradation and the coatings remained intact after interaction tests. Therefore, the Mo/Y2O3 coating was found to be a promising solution for minimizing carbon pick-up during uranium/uranium alloy melting.

Microstructure and Properties of Plasma Spray Coatings Prepared from Ti-Zr-Ni Quasicrystalline Powders

  • Seok, H.K.;Kim, Y.C.;Prima, F.;Fleury, E.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.53-54
    • /
    • 2006
  • Ti-Zr-Ni coatings deposited by low vacuum plasma spray technique consisted of nanometer-sized $W-Ti_{50}Zr_{35}Ni_{15}$ 1/1 cubic approximant and TiZrNi Laves phases as well as a low volume fraction of $ZrO_2$ phase. The shift of composition during deposition of the quasicrystalline powders and the presence of $ZrO_2$ phases are believed to be responsible for the reduced corrosion performances evaluated by means of electrochemical tests in a Hanks' Balance Salt Solution at $37^{\circ}C$.

  • PDF

용사층의 마모 기구에 관한 연구 (Study on the Wear Mechanism of the Plasma Spray Coatings)

  • 윤우생;송요승;변응선;이구현;노병호
    • 연구논문집
    • /
    • 통권25호
    • /
    • pp.193-205
    • /
    • 1995
  • Plasma 용사 코팅 기술은 전자산업과 정보산업의 기초인 Micro 반도체 산업의 기능성 목적으로 응용되고 있으며, 항공기 등의 첨단산업에서 디젤엔진이나 가스터빈 등 응용 범위를 점차 확대하고 있는 실정이다. 또한 첨단요소 부품에 적용하여 내마모성, 내열성, 내피로성, 내부식성 등을 부여하고 있다. 기능성 부품에 후처리하여 제품의 부가가치를 향상시킬 수 있어, Plasma 용사 코팅기술의 중요성은 날로 증대되고 있는 실정이다. 본 연구에서는 Plasma 용사 기술을 이용하여 코팅을 형성 내마모시험을 통해 국내 첨단요소 부품에 기능성 부여과 낙후된 용사 기술을 향상시키는 데 있다.

  • PDF

Spray-ICP technique에 의한 $SnO_2$미분말 합성 및 박막 제조 (Synthesis of ultrafine particles and thin films of $SnO_2$ by the spray-ICP technique)

  • 김정환;박종현;김영도;신건철
    • 한국결정성장학회지
    • /
    • 제8권3호
    • /
    • pp.487-492
    • /
    • 1998
  • ICP(Inductively Coupled Plasma)를 열원으로 출발용액의 농도변화 및 $TiO_2$ 첨가로 $SnO_2$$(Sn,Ti)O_2$미분말을 합성하였으며 SnO2 박막을 제조하였다. 각각 합성된 $SnO_2$ 미분말은 모두 tetragonal의 rutile형으로서 입자들의 평균입경은 30nm로 매우 미세하였으며, 좁은 입도분포를 나타내었다. $TiO_2$를 첨가하였을 경우 $SnO_2-TiO_2$ 미분말은 고용체를 이루었으며, 첨가량이 증가함에 따라 결정성은 감소하였다. ICP tail flame으로 fused quartz 기판을 가열하여 (101)면을 주 peak로 하는 $SnO_2$ 박막을 얻었다.

  • PDF

Effect of Processing Parameters and Powder Size on Microstructures and Mechanical Properties of Y2O3 Coatings Fabricated by Suspension Plasma Spray

  • Kim, Sun-Joo;Lee, Jung-Ki;Oh, Yoon-Suk;Kim, Seongwon;Lee, Sung-Min
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.395-402
    • /
    • 2015
  • The suspension plasma spray (SPS) technique has been used to obtain dense $Y_2O_3$ coatings and to overcome the drawbacks of the conventional air plasma spray (APS). SPS uses suspensions containing micrometer or sub-micrometer sized powders dispersed in liquid media. In this study, microstructure developments and mechanical properties have been investigated as functions of particle size of source material and plasma processing parameters such as plasma power and stand-off distance. The microstructure of the coating was found to be highly related to the particle size and the plasma processing parameters, and it was directly reflected in the hardness and the adhesion strength. When fine powder (BET $16.4m^2/g$) was used as a raw material in the suspension, there was, with increasing stand-off distance, a change from a dense structure with a slightly bumpy surface to a porous structure with a cauliflower-like surface. On the other hand, when a coarse powder (BET $2.8m^2/g$) was used, the coating density was lower, with microscopic splats on the surface. Using fine $Y_2O_3$ powders, the coating layer with an optimum short stand-off distance showed a high hardness of approximately 90% of that of sintered $Y_2O_3$ and an adhesion strength several times higher than that of the coating by conventional APS.