• Title/Summary/Keyword: plasma ion

Search Result 1,286, Processing Time 0.031 seconds

Ion Flux Assisted PECVD of SiON Films Using Plasma Parameters and Their Characterization of High Rate Deposition and Barrier Properties

  • Lee, Joon-S.;Jin, Su-B.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.236-236
    • /
    • 2011
  • Silicon oxynitride (SiON) was deposited for gas barrier film on polyethylene terephthalate (PET) using octamethylycyclodisiloxane (Si4O4C8H24, OMCTS) precursor by plasma enhanced chemical vapor deposition (PECVD) at low temperature. The ion flux and substrate temperature were measured by oscilloscope and thermometer. The chemical bonding structure and barrier property of films were characterized by Fourier transform infrared (FT-IR) spectroscopy and the water vapor transmission rate (WVTR), respectively. The deposition rate of films increases with RF bias and nitrogen dilution due to increase of dissociated precursor and nitrogen ion incident to the substrate. In addition, we confirmed that the increase of nitrogen dilution and RF bias reduced WVTR of films. Because, on the basis of FT-IR analysis, the increase of the nitrogen gas flow rate and RF bias caused the increase of the C=N stretching vibration resulting in the decrease of macro and nano defects.

  • PDF

Effects of plasma Immersion ion Implanted and deposited layer on Adhesion Strength of DLC film

  • Yi Jin-Woo;Kim Jong-KuK;Kim Seock-Sam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.301-305
    • /
    • 2004
  • Effects of ion implantation on the adhesion strength of DLC film as a function of ion doses and implanted energies were investigated. Ti ions were implanted on the Si-wafer substrates followed by DLC coating using ion beam deposition method. Adhesion strength of DLC films were determined by scratch adhesion tester. Morphologies and compositional variations at the different ion energies and doses were observer by Laser Microscope and Auger Electron Spectroscopy, respectively. From results of scratch test, the adhesion strength of films was improved as increasing ion implanted energy, however there was no significant evidence with ion dose.

  • PDF

THEORY AND SIMULATION OF BROADBAND ELECTROSTATIC NOISE IN THE MAGNETOTAIL

  • Kim, S.Y.
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.250-272
    • /
    • 1994
  • Various plasma instabilities driven by the ion beams have been proposed in order to explain the broadband electrostatic noise (BEN) in the earth's geomagnetic tail. Ion acoustic, ion-ion two stream, and electron acoustic instabilities have been proposed. Here we consider a theoretical investigation of the generation of BEN by cold streaming ion beams in the earth's magnetotail. Linear theory analysis and particle simulation studies for the plasma sheet, which consists of warm electrons and ions as well as cold streaming ion beams, have been done. Both beam-ion acoustic and ion-ion two stream instabilities easily occur when the beam and warm electron temperature ratio, $T_b/T_e$ is small enough. The numerical simulation results confirm the existence of broadband electrostatic noise whose frequency is ranged from $\omega$=0 to $\omega$$\omega_{pe}$.

  • PDF

The Etching of $HfO_2$ Thin Film as the ion Energy Distributions in the $BCl_3/Ar$ Inductively Coupled Plasma System ($BCl_3/Ar$ 유도 결합 플라즈마 시스템에서 이온 에너지 분포에 따른 $HfO_2$ 박막의 식각)

  • Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Jong-Gyu;Woo, Jong-Chang;Kang, Chan-Min;Kim, Chang-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.349-354
    • /
    • 2007
  • In this work, we investigated etching characteristics of $HfO_2$ thin film and Si using inductive coupled plasma(ICP) system. The ion energy distribution functions in an ICP system was analyzed by quadrupole mass spectrometer(QMS) with an electrostatic ion energy analyzer. The maximum etch rate of $HfO_2$ thin film is 85.5 nm/min at a $BCl_3/(BCl_3+Ar)$ of 20 % and decreased with further addition of $BCl_3$ gas. From the QMS measurements, the most dominant positive ion energy distributions(IEDS) showed a maximum at 20 % of $BCl_3$. These tendency was very similar to the etch characteristics. This result agreed with the universal energy dependency of ion enhanced chemical etching yields. And the maximum selectivity of $HfO_2$ over Si is 3.05 at a $O_2$ addition of 2 sccm into the $BCl_3/(BCl_3+Ar)$ of 20 % plasma.

The etching of $HfO_2$ thin film as the ion energy distributions in the $BCl_3/Ar$ inductively coupled plasma system ($BCl_3/Ar$ 유도 결합 플라즈마 시스템해서 이온 에너지 분포에 따른$HfO_2$ 박막 식각)

  • Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Jong-Kyu;Woo, Jong-Chang;Kang, Chan-Min;Kim, Chang-II
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.117-118
    • /
    • 2006
  • In this work, we investigated etching characteristics of $HfO_2$ thin film and Si using inductive coupled plasma (ICP) system. The ion energy distribution functions in an inductively coupled plasma was analyzed by quadrupole mass spectrometer with an electrostatic ion energy analyzer. The maximum etch rate of $HfO_2$ is 85.5 nm/min at a $BCl_3/(BCl_3+Ar)$ of 20% and decreased with further addition of $BCl_3$ gas. From the QMS measurements, the most dominant positive ion energy distributions (IEDs) showed a maximum at 20 % of $BCl_3$. These tendency was very similar to the etch characteristics. This result agreed with the universal energy dependency of ion enhanced chemical etching yields. And the maximum selectivity of $HfO_2$ over Si is 3.05 at a O2 addition of 2 sccm into the $BCl_3/(BCl_3+ Ar)$ of 20% plasma.

  • PDF

Dependence Analysis of Radical and Ion Densities on Plasma Parameters in $Cl_2$/Ar Discharges ($Cl_2$/Ar 방전에서의 플라즈마 변수에 대한 이온과 라디칼 밀도 의존성 분석)

  • An, Choong-Gi;Kwon, Deuk-Chul;Yu, Sin-Jae;Kim, Jeong-Hyeong;Yoon, Nam-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.103-103
    • /
    • 2010
  • Dependence of radical and ion densities on Plasma Parameters is theoretically investigated in $Cl_2$/Ar plasma discharges. Firstly, a set of reliable rate coefficients is obtained by direct calculations with cross section data set and by comparing them with previously reported values. Then, some global discharge simulations are performed for ICP(inductively coupled plasma) discharges and the results are compared with experimental results. Finally, the validated data set is used to analyze the dependence of radical and ion densities, which are usually not easy to be measured, on electron density arid temperature.

  • PDF

The Effects of Processing Parameters of Plasma Characteristics by Induced Coupled Plasma Source (유도결합 플라즈마(ICP) source로 생성된 plasma 특성의 공정 변수 영향)

  • Lee, S.W.;Kim, H.;Lim, J.Y.;Ahn, Y.Y.;Whoang, I.W.;Kim, J.H.;Ji, J.Y.;Choi, J.Y.;Lee, Y.J.;Ha, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.328-329
    • /
    • 2006
  • 반도체 소자의 소형화, 고질적화는 junction 깊이 감소와 도핑농도의 증가를 요구한다. 현재 상용화되는 도핑법은 이온빔 주입(Ion Beam Ion Implantation, IBII)인데, 이 방법은 낮은 가속에너지를 가하는 경우 이온빔의 정류가 금속이 감소해 주입 속도가 낮아져 대랑 생산이 어렵고 장비가 고가라는 단점이 있다. 하지만 플라즈마를 이용한 이온주입법 (Plasma Source Ion Implantation, PSII)은 공정 속도가 빠르고 제조비용이 매우 저렴해 새로운 이온주입법으로 주목받고 있다. PSII법에서 플라즈마 특성은 그 결과에 큰 영향을 미치므로 플라즈마 특성의 적절한 제어가 필수적으로 요구된다. 본 연구에서는 공정압력과 RF power를 변화시키며 플라즈마 밀도 측정했다. 그 결과 공정압력이 증가함에 따라서 플라즈마 밀도는 감소되었고 RF power 증가함에 따라서 플라즈마 밀도는 증가되었다.

  • PDF

The Effect of Alloy Elements on the Damping Capacity and Plasma Ion Nitriding Characteristic of Fe-Cr-Mn-X Alloys. [II Plasma Ion Nitriding Characteristic] (Fe-Cr-Mn-X계 합금의 감쇠능 및 플라즈마 이온 질화특성에 미치는 합금원소의 영향 [II플라즈마 이온 질화특성])

  • Son, D.U.;Lee, H.H.;Seong, J.H.;Park, K.S.;Kim, C.K.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.76-81
    • /
    • 2005
  • The effect of micro-pulse plasma nitriding temperature and time on the case thickness, hardness and nitride formation in the surface of Fe-12Cr-22Mn-X alloy with 3% Co and 1% Ti alloys elements investigated. External compound layer and internal diffusion layer was constituted in plasma nitride case of Fe-12Cr-22Mn-X alloys and formed nitride phase such as ${\gamma}'-Fe4N\;and\;{\varepsilon}-Fe2-3N$. Case depth increased with increasing the plasma nitriding temperature and time. Surface hardness of nitrided Fe-12Cr-22Mn-X alloys obtained the above value of Hv 1,600 and case depth obtained the above value of $45{\mu}m$ in Fe-12Cr-22Mn-3Co alloy and $60{\mu}m$ in Fe-12Cr-22Mn-1Ti alloy. Wear-resistance increased with increasing plasma nitriding time and showing the higher value in Fe-12Cr-22Mn-1Ti alloy than Fe-12Cr-22Mn-3Co alloy.

  • PDF

Localization of Ultra-Low Frequency Waves in Multi-Ion Plasmas of the Planetary Magnetosphere

  • Kim, Eun-Hwa;Johnson, Jay R.;Lee, Dong-Hun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.289-295
    • /
    • 2015
  • By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH) resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH waves can be localized in different locations along the field line.