• Title/Summary/Keyword: plasma ignition of fuel

Search Result 11, Processing Time 0.024 seconds

The System of Plasma Ignition for Coal-Dust and Water-Coal Fuels Ignition

  • Park, Hyun-Seo;I. M. Zasypkin;A. N. Timoshevskii
    • Resources Recycling
    • /
    • v.12 no.2
    • /
    • pp.54-61
    • /
    • 2003
  • In this paper a system of plasma ignition(SPI) which is applied for the ignition and stabilization of coal-dust fuel burning for decreasing fuel black oil consumption is described. The advantages of SPI are demonstrated, and the positive results of SPI which is operated at the thermal-clamping boilers installed in production and heating plants are described. The similar system was tested in demonstration and industrial installations to confirm the results. The improvement of economical, operating and ecological performances of the boiler are shown.

Ignition Characteristics of Aluminum Metal Powder Fuel with Thermal Plasma (플라즈마를 이용한 분말형 금속 연료 알루미늄의 점화 특성)

  • Lee, Sang-Hyup;Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.737-744
    • /
    • 2011
  • The success of continuous aluminum powder combustion with steam plasma is different from hydrocarbon ignition source. Ignition characteristics of aluminum powder with high temperature thermal plasma is studied with oxidizer-free environment. Experiment with argon plasma has same temperature conditions at 4500 K and particle feeding condition for previous combustion test with steam plasma and swirl combustor. The temperature of the plasma was measured using Optical Emission Spectroscopy method. Ignition characteristics were analyzed by SEM image and EDS. Aluminum powder with plasma has rapid evaporation mechanism contrast to hydrocarbon ignition source. It enhances to aluminum powder effective ignition characteristics.

  • PDF

The Present-Day State and Outlooks of Using Plasma-Energy Technologies in Heat-and-Power Industry

  • Karpenko, E.I.;Messerle, V.E.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.1-4
    • /
    • 2001
  • Urgency of using plasma-energy technologies in power industry, is outlined, increasing of economical efficiency, decreasing of energy consumption and decreasing of environmental pollution, are shown, scientific and technical bases for plasma-energy technologies of fuel utilisation, are designed, results of theoretical, experimental and rig investigations of processes of plasma ignition, gasification, thermochemical preparation for burning and combined processing of coals, are presented, results of realisation of plasma technologies of residual-oil-free (mazout) pulverised-coal boiler kindling, lighting of torch and stabilisation of luid slagging in furnaces with removal of fluid slag, are described.

  • PDF

Non-ignition Evaluation Method for Hypergolic Propellant Using Microreactor (마이크로 반응기를 이용한 접촉점화 추진제의 비점화 평가 방법)

  • Lee, Kyounghwan;Park, Seonghyeon;Kang, Hongjae;Lee, Jongkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.20-27
    • /
    • 2022
  • Hypergolic propellant ignited spontaneously when fuel and oxidizer contact without ignition system. Due to this characteristic, the risk of accidents is high when new propellants are evaluated. Prevention of accidents is very important because the damage can be large when the accident occur. In this work, we proposed non-ignition evaluation method which can replace conventional ignition evaluation method by using microreactor. The reactor was fabricated by MEMS. The heat of reaction as according to fuel and NaBH4 was estimated. At the condition of highest heat of reaction ignition was observed by drop test.

Combustion Characteristics Study using Hyper-mixer in Low-enthalpy Supersonic Flow (하이퍼 혼합기를 사용한 저엔탈피 초음속 유동장 내연소 특성 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.75-80
    • /
    • 2013
  • In this study, a forced ignition method with a plasma jet torch is studied in Mach 2 laboratory scaled wind-tunnel. The hyper-mixer is used as a mixer. For two normal injection cases, the one is collided against a wedge plate of the hyper-mixer and the other is directly injected into the cold main flow. For the first case, the hyper-mixer disperses the injected fuel, leading to the mixing enhancement. Furthermore, the fuel-air mixture is provided into the plasma hot gas, which enhances the combustion performance. However, the direct injection into the main flow method spends amount of fuel without ignition in the cold supersonic flow. In the end, for the forced combustion, it is important to supply the fuel-air mixture into the heat source.

Development of a High Energy Ignition System Using Corona Discharge (코로나 방전을 이용한 고에너지 점화 시스템 개발)

  • Park, Kyongseok;Choi, Duwon;Kang, Hyehyun;Lee, Jonghwa;Park, Jinil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.650-655
    • /
    • 2015
  • A high energy ignition system is essential for lean burn or high EGR gasoline engine, which is getting more and more interest to improve fuel economy. The high energy ignition systems comprise plasma jet, laser beam, corona discharge and so on. In this study, a high energy ignition system using corona discharge is developed and tested in a constant volume combustion chamber. The developed system shows extension of lean limit of propane-air mixture and enhencement of combustion speed. Various shape of corona discharge plugs are also tested and compared in this study.

Simultaneous optical ignition and spectroscopy of a two-phase spray flame for feedback control System (이상상태 분무 화염에서의 레이저 점화 및 분광 측정을 통한 피드백 제어 연구)

  • Lee, Seok Hwan;Kim, Hyunwoo;Do, Hyungrok;Yoh, Jack J.
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.215-218
    • /
    • 2015
  • Simultaneous laser ignition and spectroscopy is a scheme that enables rapid determination of the local equivalence ratio and condensed fuel concentration during a reaction in a two phase spray flame. We have conducted quantitative analysis of the LIBS signals according to the equivalence ratio, droplet size, droplet number density and droplet concentration as a part of novel feedback control strategy proposed for flame ignition and stabilization with simultaneous in situ combustion flow diagnostics. This is a desirable scheme since such real time information onboard an engine for instance can be constantly monitored and fed back to the control loop to enhance the mixing process and minimize emissions of unwanted species and potential combustion instability.

  • PDF

Forced Ignition Characteristics with a Plasma Jet Torch in Supersonic Flow (초음속 유동장 내 플라즈마 토치를 사용한 강제 점화 특성)

  • Kim, Chae-Hyoung;Jeung, In-Secuk;Choi, Byoung-Il;Kouchi, Toshinori;Masuya, Goro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.363-366
    • /
    • 2011
  • Mixing and combustion experiments with a vent slot mixer were performed in Mach 2 supersonic wind tunnel. Helium and hydrogen gases each were used for the mixing and the combustion experiment with a plasma jet (PJ) torch. The vent slot mixer holds plenty of fuel in the downstream mixing region, even though the fuel is transversely injected. In case of the combustion, the injected fuel is ignited by the PJ torch, and then unburned mixture is burned by shock-induced combustion downstream. Thermal choking in the combustor leads to shock trains in the isolator, causing the unstable combustion.

  • PDF

A Review of the Technical Development on Ionic Liquids for Hypergolic Propellants (하이퍼골릭 이온성 추진제 연구 개발 동향)

  • Hongjae Kang;Kyounghwan Lee;Chungman Kim;Jongkwang Lee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.74-85
    • /
    • 2022
  • Since the late 1990s, the demand for developing green or reduced-toxic storable propellants has been rising to replace the existing toxic propellants. Most of the research activities are focusing on development of new hypergolic fuels and either white fuming nitric acid or hydrogen peroxide is utilized as an oxidizer. The newly-developed hypergolic fuels are classified as three types, catalytic fuel, reactive fuel, and ionic fuel. In the present study, recent R&D trend of ionic liquid propellants is described and the main results in the previous studies are analyzed.