DOI QR코드

DOI QR Code

A Review of the Technical Development on Ionic Liquids for Hypergolic Propellants

하이퍼골릭 이온성 추진제 연구 개발 동향

  • Hongjae Kang (Department of Plasma Engineering, Korea Institute of Machinery and Materials) ;
  • Kyounghwan Lee (Department of Mechanical Engineering, Hanbat National University) ;
  • Chungman Kim (Department of Mechanical Engineering, Hanbat National University) ;
  • Jongkwang Lee (Department of Mechanical Engineering, Hanbat National University)
  • Received : 2022.09.28
  • Accepted : 2022.12.15
  • Published : 2022.12.31

Abstract

Since the late 1990s, the demand for developing green or reduced-toxic storable propellants has been rising to replace the existing toxic propellants. Most of the research activities are focusing on development of new hypergolic fuels and either white fuming nitric acid or hydrogen peroxide is utilized as an oxidizer. The newly-developed hypergolic fuels are classified as three types, catalytic fuel, reactive fuel, and ionic fuel. In the present study, recent R&D trend of ionic liquid propellants is described and the main results in the previous studies are analyzed.

1990년대부터 기존 맹독성 이원추진제를 대체하기 위해 수행되어 오던 친환경 혹은 저독성 이원추진제 조합에 관한 연구는 최근 우주 추진기술 개발과정에서 경제성, 안정성, 효율성 등이 강조되며 더욱 주목받고 있다. 연구활동은 주로 저독성 하이퍼골릭 연료를 개발하는 것에 집중되어 왔으며 백연질산 혹은 고농도 과산화수소 산화제로 사용하였다. 저독성 하이퍼골릭 연료의 종류는 촉매성 연료, 반응성 연료, 이온성 연료로 구분할 수 있다. 본 논문에서는 하이퍼골릭 이온성 연료의 연구개발 동향을 소개하고 선행연구에서 보고된 주요 결과들에 대해 분석하고자 한다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2022R1F1A1063648).

References

  1. Park, S., Kang, H., Park, Y. and Lee, J., "A Review of the Technical Development on Green Hypergolic Propellant," Journal of the Korean Society of Propulsion Engineers, Vol. 24, No. 4, pp. 79-88, 2020.  https://doi.org/10.6108/KSPE.2020.24.4.079
  2. Singh, R.P., Verma, R.D., Meshri, D.T. and J.M. Shreeve, "Energetic Nitrogen-Rich Salts and Ionic Liquid," Angewandte Chemie International Edition, Vol. 45, pp. 3584-3601, 2006.  https://doi.org/10.1002/anie.200504236
  3. Schneider, S., Hawkins, T., Rosander, M., Vaghjiani, G., Chambreau, S. and Drake, G., "Ionic Liquids as Hypergolic Fuels," Energy and Fuels, Vol. 22, pp. 2871-2872, 2008.  https://doi.org/10.1021/ef800286b
  4. Zhang, Y. and Shreeve, J.M., "Dicyanoborate-Based Ionic Liquids as Hypergolic Fluids," Angewandte Chemie International Edition, Vol. 50, pp. 935-937, 2011.  https://doi.org/10.1002/anie.201005748
  5. Zhang, Y., Gao, H., Joo, Y.H. and Shreeve, J.M., "Ionic Liquids as Hypergolic Fuels," Angewandte Chemie International Edition, Vol. 50, pp. 9554-9562, 2011.  https://doi.org/10.1002/anie.201101954
  6. Zhang, Q., Yin, P., Zhang, J. and Shreeve, J.M., "Cyanoborohydride-Based Ionic Liquids as Green Aerospace Bipropellant Fuels," Chemistry A European Journal, Vol. 20, pp. 6909-6914, 2014.  https://doi.org/10.1002/chem.201402704
  7. Li, S., Gao, H. and Shreeve J.M., "Borohydride Ionic Liquids and Borane/Ionic-Liquid Solutions as Hypergolic Fuels with Superior Low Ignition-Delay Times," Angewandte Chemie International Edition, Vol. 53, pp. 2969-2972, 2014.  https://doi.org/10.1002/anie.201309044
  8. McCrary, P.D., Chatel G., Alaniz, S.A., Cojocaru, O.A., Beasley, P.A., Flores, L.A., Kelley, S.P., Barber, P.S. and Rogers, R.D., "Evaluating Ionic Liquids as Hypergolic Fuels: Exploring Reactivity from Molecular Structure," Energy and Fuels, Vol. 28, pp. 3460-3473, 2014.  https://doi.org/10.1021/ef500264z
  9. Chand, D., Zhang, J. and Shreeve, J.M., "Borohydride Ionic Liquids as Hypergolic Fuels: A Quest for Improved Stability." Chemistry A European Journal, Vol. 21, pp. 13297-13301, 2015.  https://doi.org/10.1002/chem.201502059
  10. Huang, S., Zhang, W., Liu, T., Wang, K., Qi, X., Zhang, J. and Zhang, Q., "Towards N-Alkylimidazole Borane-based Hypergolic Fuels," Chemistry An Asian Journal, Vol. 11, pp. 3528-3533, 2016.  https://doi.org/10.1002/asia.201601194
  11. Jiao, N., Zhang, Y., Liu, L., Shreeve, J.M. and Zhang, S., "Hypergolic Fuels based on Water-stable Borohydride Cluster Anions with Ultralow Ignition Delay Times," Journal of Materials Chemistry A, Vol. 5, pp. 13341, 2017. 
  12. Jin, Y., Shi, Y., Qi, X., Huang, S. and Zhang, Q., "Theoretical Study on Hydrolytic Stability of Borohydride-Rich Hypergolic Ionic Liquids," The Journal of Physical Chemistry A, Vol. 124, No. 15, pp. 2942-2950, 2020.  https://doi.org/10.1021/acs.jpca.9b10994
  13. Zhang, Z., Zhao, Z., Wang, B. and Zhang, J., "Boron based hypergolic ionic liquids: A review," Green Energy and Environment, Vol. 6, pp. 794-822, 2021.  https://doi.org/10.1016/j.gee.2020.12.002
  14. Wang, Z., Wang, B., Guo, Y., Jin, Y., Fei, L., Huang, S., Zhang, W., Tang, C. and Zhang, Q., "From Heart Drug to Propellant Fuels: Designing Nitroglycerin-ionic Liquid Composite As Green High-energy Hypergolic Fluids," Combustion and Flame, Vol. 233, pp. 111597, 2021. 
  15. Sun, C. and Tang, S., "Hypergolic Ionic Mixtures With Task-specific Ions: A New Strategy to Improve Performances of Ionic Liquids As Propellant Fuels," Combustion and Flame, Vol. 228, pp. 107-113, 2021.  https://doi.org/10.1016/j.combustflame.2021.01.041
  16. Schneider, S., Hawkins, T., Ahmed, Y., Rosander, M., Hudgens, L. and Mills, J., "Green Bipropellants: Hydrogen-Rich Ionic Liquids that Are Hypergolic with Hydrogen Peroxide," Angewandte Chemie, Vol. 123, pp. 6008-6010, 2011.  https://doi.org/10.1002/ange.201101752
  17. Lauck, F., Balkenhohl, J., Negri, M., Freudenmann, D. and Schlechtriem, S., "Green Bipropellant Development -A Study on The Hypergolicity of Imidazole Thiocyanate Ionic Liquids with Hydrogen Peroxide in an Automated Drop Test Setup," Combustion and Flame, Vol. 226, pp. 87-97, 2021.  https://doi.org/10.1016/j.combustflame.2020.11.033
  18. Negri, M. and Lauck, F., "Hot Firing Tests of a Novel Green Hypergolic Propellant in a Thruster," Journal of Propulsion and Power, published online Open Access 13 Jan. 2021. 
  19. Ricker, S.C., Freudenmann, D. and Schlechtriem, S., "The Impact of Cation Structures on Hypergolicity of Thiocyanate Ionic Liquids with Hydrogen Peroxide," Energy and Fuels, Vol. 35, pp. 16128-16133, 2021.  https://doi.org/10.1021/acs.energyfuels.1c02427
  20. U. Swami, N. Kumbhakarna, A. Chowdhury, "Green Hypergolic Ionic Liquids: Future Rocket Propellants," Journal of Ionic Liquids," Vol. 2, pp. 100039, 2022. 
  21. S. Nath, I. Laso, L. Mallick, Z. Sobe, S. Koffler, B. Blumer-Ganon, E. Borzin, N. Libis, J.K. Lefkowitz, "Comprehensive ignition characterization of a non-toxic hypergolic hybrid rocket propellant," Proceedings of the Combustion Institute, Available online 5 Sept. 2022. 
  22. Kim, Y.S., Son, G.H., Na, T.K. and Choi, S.H., "Synthesis and Physical and Chemical Properties of Hypergolic Chemicals such as N,N,N-Trimethylhydrazinium and 1-Ethyl-4-Methyl-1,2,4-Triazolium Salts," Applied Sciences, Vol. 5, pp. 1547-1559, 2015.  https://doi.org/10.3390/app5041547
  23. Bhosale, V.K., Gwak, J., Kim, K.S., Churchill, D.G., Lee, Y. and Kwon, S., "Rapid ignition of "green" bipropellants enlisting hypergolic copper (II) promoter-in-fuel," Fuel, Vol. 297, pp. 120734, 2021. 
  24. Park, S., Lee, K., Kang, H., Park, Y. and Lee, J., "Effects of oxidizing additives on the physical properties and ignition performance of hydrogen peroxide-based hypergolic propellants," Acta Astronautica, Vol. 200, pp.48-55, 2022. https://doi.org/10.1016/j.actaastro.2022.07.051