• 제목/요약/키워드: plasma flow

검색결과 1,179건 처리시간 0.025초

소용량 교류 MHD발전기에 대한 실험적 연구 (Experiment on Small A.C. MHD Power Generator)

  • 전춘생
    • 전기의세계
    • /
    • 제25권5호
    • /
    • pp.79-87
    • /
    • 1976
  • This paper is to investigate the A.C generation of MHD engine, converting directly the kinetic energy of conductive gas in high temperature to electric power by the effect of magnetic field. It is known that there are at least two kinds of method in A.C MHD power generation; one, by sending stationary plasma flow in an alternating or rotating magnetic field and the other, by transmission of pulse type plasma flow in uniform and constant magnetic field, former method is adopted here. In order to raise the total efficiency of close cycle in combination with nuclear power and MHD genertaion, an argon plasma jet is utilized as heat source, which is not mixed with the seed material, and the design data are obtained for A.C MHD generation in small capacity, but induced voltage and power output have the maximum values, 15 voltages and 7.5W respectively due to plasma flow with low conductivity and weak magnetic field.

  • PDF

질소와 아르곤 가스를 이용한 플라즈마의 전기적특성 연구 (The study of Electrical Characteristic of Plasma by Nitrogen and Argon)

  • 김동구;박기배;한상도;한상옥
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.323-326
    • /
    • 1998
  • The current-voltage characteristic have been measured in a gas stabilized DC arc generated in a non-transferred arc plasma torch operating on a mixture of argon and nitrogen. Relation between voltage and current to these arcs has been examined by plasma power and current under different flow rates and gas mixture ratios. Firstly, the voltage and current of arc plasma used argon was measured and secondly, in argon-nitrogen mixed gas regime, the flow rate of nitrogen was increased slowly. When the flow rate of nitrogen was increased, electrode drop of potential was increased.

  • PDF

플라즈마 식각을 이용한 초전도 자속 흐름 트랜지스터 제작 (Fabrication of Superconducting Flux Flow Transistor using Plasma etching)

  • 강형곤;임성훈;고석철;한윤봉;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.74-77
    • /
    • 2002
  • The channel of the superconducting Flux Flow Transistor has been fabricated with plasma etching method using ICP. The ICP conditions were 700 W of ICP power, 150 W of rf chuck power, 5 mTorr of the pressure in chamber and 1:1 of Ar : Cl$_2$, respectively. The channel etched by plasma gas showed superconducting characteristics of over 77 K and superior surface morphology. The critical current of SFFT was altered by varying the external applied current. As the external applied current increased from 0 to 12 mA, the critical current decreased from 28 to 22 mA. Then the obtained r$\sub$m/ values were smaller than 0.1Ω at a bias current of 40 mA. The current gain was about 0.5. Output resistance was below 0.2 Ω.

  • PDF

Attenuation of Background Molecular Ions and Determination of Isotope Ratios by Inductively Coupled Plasma Mass Spectrometry at Cool Plasma Condition

  • 박창준
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권7호
    • /
    • pp.706-710
    • /
    • 1997
  • Isotope ratios of K, Ca, Cr and Fe are measured at cool plasma condition generated using high carrier flow rate and relatively low RF power of 900 W. Background molecular ions are suppressed to below 100 counts which give isobaric interference to the analytes. The background ions show different attenuation characteristics at increased carrier flow rate and hence for each element different carrier flow rate should be used to measure isotope ratios without isobaric interference. Isotope ratios are measured at both scan and peak-hopping modes and compared with certified or accepted ratios. The measured isotope ratios show some mass discrimination against low mass due to low ion energy induced from a copper shield to eliminate capacitive coupling of plasma with load coil.

Applications of Plasma Modeling for Semiconductor Industry

  • Efremov, Alexandre
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제15권9호
    • /
    • pp.10-14
    • /
    • 2002
  • Plasma processing plays a significant role in semiconductor devices technology. Development of new plasma systems, such as high-density plasma reactors, required development of plasma theory to understand a whole process mechanism and to be able to explain and to predict processing results. A most important task in this way is to establish interconnections between input process parameters (working gas, pressure flow rate input power density) and a various plasma subsystems (electron gas, volume and heterogeneous gas chemistry, transport), which are closely connected one with other. It will allow select optimal ways for processes optimizations.

  • PDF

DBD(Dielectric Barrier Discharges)에서 전공 플라즈마 발생에 대한 해석적 연구 (An Analysis of Vacuum Plasma Phenomena in DBD(Dielectric Barrier Discharges))

  • 선명수;차성훈;김종봉;김종호;김성영;이혜진
    • 한국정밀공학회지
    • /
    • 제26권3호
    • /
    • pp.122-128
    • /
    • 2009
  • DBD(Dielectric Barrier Discharges) plasma is often used to clean the surface of semiconductor. The cleaning performance is affected mainly by plasma density and duration time. In this study, the plasma density is predicted by coupled simulation of flow, chemistry mixing and reaction, plasma, and electric field. 13.56 MHz of RF source is used to generate plasma. The effect of dielectric thickness, gap distance, and flow velocity on plasma density is investigated. It is shown that the plasma density increases as the dielectric thickness decreases and the gap distance increases.

수중 Plasma 공정을 이용한 Ralstonia Solanacearum 불활성화 (Inactivation of Ralstonia Solanacearum Using Aquatic Plasma Process)

  • 백상은;김동석;박영식
    • 한국환경과학회지
    • /
    • 제21권7호
    • /
    • pp.797-804
    • /
    • 2012
  • A dielectric barrier discharge (DBD) plasma reactor was investigated for the inactivation of Ralstonia Solanacearum which causes bacterial wilt in aquiculture. The DBD plasma reactor of this study was divided into power supply unit, gas supply unit and plasma reactor. The plasma reactor consisted of a quartz dielectric tube, discharge electrode (inner) and ground electrode (outer). The experimental results showed that the optimum 1st voltage, 2nd voltage, air flow rate and pH were for 100 V (1st voltage), 15 kV (2nd voltage), 4 L/min, and pH 3, respectively. At a low 1st voltage, shoulder and tailing off phenomena was observed. The shoulder phenomenon was decreased as the increase of 1st voltage. R. Solanacearum disinfection in the lower air flow rate was showed shoulder and tailing off phenomenon because the active species generated less. Under optimum condition, shoulder and tailing off phenomenon was reduced. When the 2nd voltage was less than 7.5 kV, tailing off phenomenon was observed and this was not vanishes even though the increase of the disinfection time. The inactivation efficiency increased as the increase of air flow rate, however, the efficiency decreased when the air flow rate was above 4 L/min. R. Solanacearum disinfection at pH 3 showed somewhat higher than in pH 11. The pH effect of R. Solanacearum deactivation is less than the impact on other factor.

Dual-frequency $CH_2F_2/H_2/Ar$ capacitively coupled plasma를 이용한 실리콘질화물과 ArF PR의 무한 선택비 식각 공정 (Infinite Selectivity Etching Process of Silicon Nitride to ArF PR Using Dual-frequency $CH_2F_2/H_2/Ar$ Capacitively Coupled Plasmas)

  • 박창기;이춘희;김희대;이내응
    • 한국표면공학회지
    • /
    • 제39권3호
    • /
    • pp.137-141
    • /
    • 2006
  • Process window for infinite etch selectivity of silicon nitride $(Si_3N_4)$ layers to ArF photoresist (PR) was investigated in dual frequency superimposed capacitive coupled plasma (DFS-CCP) by varying the process parameters such as low frequency power $(P_{LF})$, $CH_2F_2$ and $H_2$ flow rate in $CH_2F_2/H_2/Ar$ plasma. It was found that infinite etch selectivities of $Si_3N_4$ layers to the ArF PR on both blanket and patterned wafers can be obtained for certain gas flow conditions. The etch selectivity was increased to the infinite values as the $CH_2F_2$ flow rate increases, while it was decreased from the infinite etch selectivity as the $H_2$ flow rate increased. The preferential chemical reaction of the hydrogen with the carbon in the polymer film and the nitrogen on the $Si_3N_4$ surface leading to the formation of HCN etch by-products results in a thinner steady-state polymer and, in turn, to continuous $Si_3N_4$ etching, due to enhanced $SiF_4$ formation, while the polymer was deposited on the ArF photoresist surface.

Measurement of Plasma Parameters (Te and Ne) and Reactive Oxygen Species in Nonthermal Bioplasma Operating at Atmospheric Pressure

  • Choi, Eun Ha;Kim, Yong Hee;Kwon, Gi Chung;Choi, Jin Joo;Cho, Guang Sup;Uhm, Han Sup;Kim, Doyoung;Han, Yong Gyu;Suanpoot, Pradoong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.141-141
    • /
    • 2013
  • We have generated the needle-typed nonthermal plasma jet by using an Ar gas flow at atmospheric pressure. Diagnostics of electron temperature anddensity is critical factors in optimization of the atmospheric plasma jet source in accordance with the gas flow rate. We have investigated the electron temperature and density of plasma jet by selecting the four metastable Ar emission lines based on the atmospheric collisional radiative model and radial profile characteristics of current density, respectively. The averaged electron temperature and electron density for this plasma jet are found to be ~1.6 eV and ~$3.2{\times}10^{12}cm^{-3}$, respectively, in this experiment. The densities of OH radical species inside the various bio-solutions are found to be higher by about 4~9 times than those on the surface when the argon bioplasma jet has been bombarded onto the bio-solution surface. The densities of the OH radicalspecies inside the DI water, DMEM, and PBS are measured to be about $4.3{\times}10^{16}cm^{-3}$, $2.2{\times}10^{16}cm^{-3}$, and $2.1{\times}10^{16}cm^{-3}$, respectively, at 2 mm downstream from the surface under optimized Ar gas flow 250 sccm.

  • PDF

Dry Etching of Ru Electrodes using O2/Cl2 Inductively Coupled Plasmas

  • Kim, Hyoun Woo
    • Corrosion Science and Technology
    • /
    • 제2권5호
    • /
    • pp.238-242
    • /
    • 2003
  • The characteristics of Ru etching using $O_2/Cl_2$ plasmas were investigated by employing inductively coupled plasma (ICP) etcher. The changes of Ru etch rate, Ru to $SiO_2$ etch selectivity and Ru electrode etching slope with the gas flow ratio, bias power, total gas flow rate, and source power were scrutinized. A high etching slope (${\sim}86^{\circ}$) and a smooth surface after etching was attained using $O_2/Cl_2$ inductively coupled plasma.