• Title/Summary/Keyword: plasma flow

Search Result 1,179, Processing Time 0.026 seconds

A Study on the High Selective Oxide Etching using Inductively Coupled Plasma Source (유도결합형 플라즈마원을 이용한 고선택비 산화막 식각에 관한 연구)

  • 이수부;박헌건;이석현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.4
    • /
    • pp.261-266
    • /
    • 1998
  • In developing the high density memory device, the etching of fine pattern is becoming increasingly important. Therefore, definition of ultra fine line and space pattern and minimization of damage and contamination are essential process. Also, the high density plasma in low operating pressure is necessary. The candidates of high density plasma sources are electron cyclotron resonance plasma, helicon wave plasma, helical resonator, and inductively coupled plasma. In this study, planar type magnetized inductively coupled plasma etcher has been built. The density and temperature of Ar plasma are measured as a function of rf power, flow rate, external magnetic field, and pressure. The oxide etch rate and selectivity to polysilicon are measured as the above mentioned conditions and self-bias voltage.

  • PDF

A Basic Study of Plasma Reactor of Dielectric Barrier Discharge for the Water Treatment (수처리용 유전체장벽 플라즈마 반응기에 대한 기초 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.623-630
    • /
    • 2011
  • This study investigated the degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical) by using dielectric barrier discharge (DBD) plasma. The DBD plasma reactor of this study consisted of a quartz dielectric tube, titanium discharge (inner) and ground (outer) electrode. The effect of shape (rod, spring and pipe) of ground electrode, diameter (9~30 mm) of ground electrode of spring shape and inside diameter (4~13 mm) of quartz tube, electrode diameter (1~4 mm), electrode materials (SUS, Ti, iron, Cu and W), height difference of discharge and ground electrode (1~15.5 cm) and gas flow rate (1~7 L/min) were evaluated. The experimental results showed that shape of ground electrode and materials of ground and discharge electrode were not influenced the RNO degradation. The thinner the diameter of discharge and ground electrode, the higher RNO degradation rate observed. The effect of height gap of discharge between ground electrode on RNO degradation was not high within the experimented value. Among the experimented parameters, inside diameter of quartz tube and gas flow rate were most important parameters which are influenced the decomposition of RNO. Optimum inside diameter of quartz tube and gas flow rate were 7 mm and 4 L/min, respectively.

A Study on the Electrical Properties of ITO Thin Films with Various Oxygen Gas Flow Rate (산소 가스 유량비 변화에 따른 ITO 박막의 전기적 특성에 관한 연구)

  • Choi, Dong-H.;Keum, Min-J.;Jean, A.R.;Han, Jean-G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.3
    • /
    • pp.144-148
    • /
    • 2007
  • To prepare the transparent electrode for electronic devices such as flat panel or flexible displays, solar cells, and touch panels; tin doped $In_2O_3$ (ITO) films with low resistivity and a high transparency were fabricated using a facing target sputtering (FTS) system at the various oxygen gas flow rate. The carrier concentration and mobility of ITO films were measured by Hall Effect measurement. And the transmittance was measured using the UV-VIS spectrometer. As a result, we can obtain the ITO thin films prepared at 10% oxygen gas flow ratio, thickness 150 nm with transmittance 85% and resistivity $8.1{\times}10^{-4}{\Omega}cm$ and surface roughness 5.01 nm.

A Measurements of Radio-Frequency Induction Discharge Plasma using probe method (고주파 유도방전 플라즈마의 푸로우브법에 의한 계측)

  • Park, Sung-Gun;Park, Sang-Yun;Ha, Chang-Ho;Park, Won-Zoo;Lee, Kwang-Sik;Lee, Dong-In
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1657-1659
    • /
    • 1997
  • Electron temperature and electron density were measured in a radio-frequency inductively coupled plasma (RFICP) using a probe measurements. Measurement was conducted in an argon discharge for pressures from 10 [mTorr] to 40 [mTorr] and input rf power from 100 [W] to 800 [W], Ar flow rate from 5 [sccm] to 30 [sccm], Spatial distribution electron temperature and electron density were measured for discharge with same aspect ratio (R/L=2). Electron temperature and electron density were discovered depending on both pressure and power, Ar flow rate. Electron density was increased with increasing input power and in creasing pressure, increasing Ar flow rate. Radial distribution of the electron density was peaked in the plasma center. Normal distribution of the electron density was peaked in the center between quartz plate and substrate. From these results, We found out the generation mechanism of Radio-Frequency Inductively Coupled Plasma.

  • PDF

Numerical Study on Laser-driven In-Tube Accelerator (LITA) Performance using a Plasma Size Modeling

  • Kim, Sukyum;Toshiro Ohtani;Akihiro Sasoh;Jeung, In-Seuck;Park, Jeong--Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.320-324
    • /
    • 2004
  • Laser Propulsion is a device that generates thrust using laser energy. Laser-driven In-Tube Accelerator (LITA) has been developed at Tohoku University. LITA is a laser propulsion system that accelerates an object not in an open air but in a tube. Experiments of vertical launching and pressure measurement on the tube wall were carried out and in order to observe the initial state of plasma and blast wave, the visualization experiment was carried out using the shadowgraph method. In this study, the time variation of pressure on the tube wall is numerically simulated solving Euler equation. In order to model the laser energy, heat source function added to the frozen flow Euler equation. Plasma size from the shadowgraph images was used for the initial condition of laser energy input. For verification of the modeling, these results were compared with the previous experimental and numerical results. From these verifications, an analysis of LITA performance will be investigated.

  • PDF

Characteristics of Plasma etching and Fabrication of Superconducting Flux Flow Transistor (플라즈마 식각 특성과 이를 이용한 초전도 자속 흐름 트랜지스터)

  • Kang, H.G.;Park, C.B.;Lee, K.S.;Kim, H.G.;Hwang, C.S.;Han, B.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.138-141
    • /
    • 2002
  • The channel of the superconducting Flux Flow Transistor has been fabricated with plasma etching method using ICP. The ICP conditions were 700 W of ICP power, 150 W of rf chuck power, 5 mTorr of the pressure in chamber and 1:1 of Ar : $Cl_2$, respectively. The channel etched by plasma gas showed superconducting characteristics of over 77 K and superior surface morphology. The critical current of SFFT was altered by varying the external applied current. As the external applied current increased from 0 to 12 mA, the critical current decreased from 28 to 22 mA. Then the obtained $r_m$ values were smaller than $0.1\Omega$ at a bias current of 40 mA. The current gain was about 0.5. Output resistance was below $0.2\Omega$.

  • PDF

CONTROL OF SQUARE CYLINDER FLOW USING PLASMA SYNTHETIC JETS (플라즈마 합성제트를 이용한 사각 실린더 유동의 제어)

  • Kim, Dong-Joo;Kim, Kyoung-Jin
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.85-92
    • /
    • 2012
  • Flows over a square cylinder with and without plasma actuation are numerically investigated to see whether plasma actuation can effectively modify vortex shedding from the cylinder and reduce the drag and lift fluctuations. In this study, a plasma synthetic jet actuator is mounted on the rear side of cylinder as a means of direct-wake control. The effect of plasma actuation is considered by adding a momentum forcing term in the Navier-Stokes equations. Results show that the reduction of mean drag and lift fluctuations is obtained for both steady and unsteady actuation. However, the steady actuation is better than the unsteady one in terms of mean drag as well as drag fluctuations. With the strong steady actuation considered, the interaction of two separating shear layers from rear corners is effectively weakened due to the interference of synthetic jets. It results in a merging of synthetic-jet and shear-layer vortices and the increase of vortex shedding frequency. On the other hand, the unsteady actuation generates pulsating synthetic jets in the near wake, but it does not change the vortex shedding frequency for the actuation frequencies considered in this study.

Exhaust Plasma Characteristics of Direct-Current Arcjet Thrusters

  • Tahara, Hirokazu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.327-334
    • /
    • 2004
  • Spectroscopic and electrostatic probe measurements were made to examine plasma characteristics with or without a metal plate for a 10-㎾-class direct-current arcjet Heat fluxes into the plate from the plasma were also evaluated with a Nickel slug and thermocouple arrangement. Ammonia and mixtures of nitrogen and hydrogen were used. The NH$_3$ and $N_2$+3H$_2$ plasmas in the nozzle and in the downstream plume without a plate were in thermodynamical nonequilibrium states. As a result, the H-atom electronic excitation temperature and the $N_2$ molecule-rotational excitation temperature intensively decreased downstream in the nozzle although the NH molecule-rotational excitation temperature did not show an axial decrease. Each temperature was kept in a small range in the plume without a plate except for the NH rotational temperature for NH$_3$ gas. On the other hand, as approaching the plate, the thermodynamical nonequilibrium plasma came to be a temperature-equilibrium one because the plasma flow tended to stagnate in front of the plate. The electron temperature had a small radial variation near the plate. Both the electron number density and the heat flux decreased radially outward, and an increase in H$_2$ mole fraction raised them at a constant radial position. In cases with NH$_3$ and $N_2$+3H$_2$ a large number of NH radical with a radially wide distribution was considered to cause a large amount of energy loss, i.e., frozen flow loss, for arcjet thrusters.

  • PDF

Manufacturing and characterization of ECR-PECVD system (ECR-PECVD 장치의 제작과 특성)

  • 손영호;정우철;정재인;박노길;황도원;김인수;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.7-15
    • /
    • 2000
  • An ECR-PECVD system with the characteristics of high ionization rat다 ability of plasma processing in a wide pressure range and deposition at low temperature was manufactured and characterized for the deposition of thin films. The system consists of a vacuum chamber, sample stage, vacuum gauge, vacuum pump, gas injection part, vacuum sealing valve, ECR source and a control part. The control of system is carried out by the microprocessor and the ROM program. We have investigated the vacuum characteristics of ECR-PECVD system, and also have diagnosed the characteristics of ECR microwave plasma by using the Langmuir probe. From the data of system and plasma characterization, we could confirmed the stability of pressure in the vacuum chamber according to the variation of gas flow rate and the effect of ion bombardment by the negative DC self bias voltage. The plasma density was increased with the increase of gas flow rate and ECR power. On the other hand, it was decreased with the increase of horizontal radius and distance between ECR source and probe. The calculated plasma densities were in the range of 49.7\times10^{11}\sim3.7\times10^{12}\textrm{cm}^{-3}$. It is also expected that we can estimate the thickness uniformity of film fabricated by the ECR-PECVD system from the distribution of the plasma density.

  • PDF

Development of Multi Dielectric Barrier Discharge Plasma Reactor for Water Treatment (수처리용 다중 유전체 방벽 방전 플라즈마 반응기 개발)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.863-871
    • /
    • 2013
  • Dielectric discharges are an emerging technique in environmental pollutant degradation, which that are characterized by the production of hydroxyl radicals as the primary degradation species. For practical application of the plasma reactor, reactor that can handle large amounts of water are needed. Plasma research to date has focused on small-scale water treatment. This study was carried out basic study for scale-up of a single DBD (dielectric barrier discharge) plasma reactor. The degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical) was used as a performance indicator of multi-plasma reactor. The experiments is divided into two parts: design parameters [effect of distance of single plasma module (1~14 cm), arrangement of ground electrode (single and multi), rector number (1~5) and power number (1~5)]; operation parameter [effect of applied voltage (60~220 V), air flow rate (1~5 L/min), electric conductivity of solution ($1.4{\mu}S/cm$, deionized water)~18.8 mS/cm (addition of NaCl 10 g/L) and pH (5~9)]. Considering the electric stability of the plasma reactor, optimum spacing between the single plasma module was 2 cm. Multi discharge electrodes - single ground electrode array was selected. Combination of power 3-plasma module 5 was the optimal combination for maximum RNO degradation. The optimum 1st voltage and air flow rate for RNO degradation were 180 V and 4 L/min, respectively. The pH and conductivity of the solution was not influencing the RNO degradation.