• Title/Summary/Keyword: plasma distribution device

Search Result 26, Processing Time 0.026 seconds

A Study on the Design of Magnetic Circuit for MgO ion plating Device (MgO 박막장치의 자기회로 설계에 관한 연구)

  • Jeong, Y.H.;Choi, Y.W.;Kang, D.H.;Jang, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.723-725
    • /
    • 2001
  • Ion plating method using plasma is faster as several times than electron beam plating method in plating process. Recently, a variety of techniques for this method are being researched. In this paper to produce sheet plasma with high density for ion plating we designed magnetic circuit of MgO plating device consisting of solenoid coil, rectangular permanent magnet. And, we researched on the effect of those by analyzing magnetic field distribution using FEM.

  • PDF

Image Observation of NO Particles Using ICCD camera (ICCD Camera를 이용한 NO 입자의 Image 관측)

  • 전용우;최준영;최상태;박원주;이광식;신용철
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.209-213
    • /
    • 2000
  • In this paper, the removal rate of NO in a reactor is measured first using nonthermal plasma generated from a wire-cylinder type reactor, then the spatial density distribution of NO particles is investigated using ICCD(Intensified Charged Coupled Device) camera. This research uses nonthermal plasma from electrical discharge to analyze the NO characteristics, and the measurements of NO discharge image and Distribution are performed using the ICCD camera to examine the NO characteristics more closely. Furthermore, the method of Laser Induced Fluorescence (LIF) is used to analyze the particular behavior of NO particles more specifically, to suggest a method of reducing exhaust gas, a serious environmental problem.

  • PDF

Monte Carlo Simulation for Particle Behavior of Recycling Neutrals in a Tokamak Diverter Region

  • Kim, Deok-Kyu;Hong, Sang-Hee;Kihak Im
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.459-467
    • /
    • 1997
  • The steady-state behavior of recycling neutral atoms in a tokamak edge region has been analyzed through a two-dimensional Monte Carlo simulation. A particle tracking algorithm used in earlier research on the neutral particle transport is applied to this Monte Carlo simulation in order to perform more accurate calculations with the EDGETRAN code which was previously developed for a two-dimensional edge plasma transport in the authors' laboratory. The physical model of neutral recycling includes charge-exchange and ionization interactions between plasmas and neutral atoms. The reflection processes of incident particles on the device wall are described by empirical formulas. Calculations for density, energy, and velocity distributions of neutral deuterium-tritium atoms have been carried out for a medium-sized tokamak with a double-null configuration based on the KT-2 conceptual design. The input plasma parameters such as plasma density, ion and electron temperatures, and ion fluid velocity are provided from the EDGETRAN calculations. As a result of the present numerical analysis, it is noticed that a significant drop of the neutral atom density appears in the region of high plasma density and that the similar distribution of neutral energy to that of plasma ions is present as frequently reported in other studies. Relations between edge plasma conditions and the neutral recycling behavior are discussed from the numerical results obtained herein.

  • PDF

The Design of Cryogenic System for KSTAR TOKAMAK (KSTAR TOKAMAK을 위한 저온시스템의 설계)

  • 김동락;오영국;정영수;이정민;최창호;임기학;허남일;김양수;박영민
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.48-49
    • /
    • 2001
  • Cryogenic technology is one of the key technologies for fusion reactor equipped with superconducting coil for plasma confinement. The KSTAR(Korea Superconducting Tokamak Advanced Research)Project is in progress since 1996. Major parameters of the KSTAR tokamak are : major radius 1.8m, minor radius 0.5m, toroidal field 3.5 Tesla and plasma current 2MA with a strongly shaped plasma cross-section and double -null diverter. Considering practical engineering constraints, the KSTAR device is designed for a pulse length of 300 sec in up-graded operation mode but in the initial configuration would provide a pulse length of 20 sec provided by the poloidal coil system in base-line operation mode. The cryogenic system is composed as follows : cold box, helium compressor system, distribution box, helium gas buffer tank, helium gas purifying system, gas recovery system, liquid helium storage dewar, current lead box, current bus line and liquid nitrogen storage tank.

  • PDF

Synthesis and Characterization of Glold Nanofluid Prepared by the Solution Plasma Processing (용액 플라즈마 공정을 이용하여 제조된 금 나노유체의 특성평가)

  • Heo, Yong-Kang;Lee, Sang-Yul
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.342-346
    • /
    • 2010
  • In the present work, water-based gold nanofluids were synthesized by the solution plasma processing (SPP). The size distribution and the shape of gold nanoparticles in the nanofluids were investigated using high resolution transmission electron microscopy (HR-TEM). The dispersion stability of gold nanofluids was characterized using zeta potential, as well. The thermal properties of gold nanofluids were measured by utilizing lambda measurement device. Nanofluids containing nanoparticles with $64.0{\pm}42.1\;nm{\sim}18.10{\pm}5.0\;nm$ in diameter were successfully synthesized. As diameter of nanoparticles decreased, dispersion stability of nanofluids increased and the enhanced ratio of thermal conductivity increased. The nanofluid with nanoparticles of $18.10\;{\pm}\;5.0\;nm$ in diameter showed approximately 3% improvement in thermal conductivity measurement and this could be due to the enhanced Brownian movement.

The effect of the cell size on the discharge characteristics of a plasma display panel

  • Moon, Cheol-Hee
    • Journal of Information Display
    • /
    • v.12 no.1
    • /
    • pp.29-35
    • /
    • 2011
  • In this study, plasma display panels with three different cell volumes were prepared by changing the spaces between the vertical barrier ribs into two and three times the reference structure. The discharge gap and area of the segmented ITO electrode were the same for the three cases, and Ne.20%Xe gas was used. The luminance and luminance efficiency were measured using applied voltage variations. The time evolution and intensity distribution of the infrared, which are related to the vacuum ultraviolet, were observed via intensified, charged, coupled device, and the visible-light intensity profiles were observed using PR-900 to analyze the discharge phenomena in the discharge cell.

Improved Distribution of Threshold Switching Device by Reactive Nitrogen and Plasma Treatment (반응성 질소와 플라즈마 처리에 의한 문턱 스위칭 소자의 개선)

  • Kim, DongSik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.172-177
    • /
    • 2014
  • We present on a threshold switching device based on AsGeTeSi material which is significantly improved by two $N_2$ processes: reactive $N_2$ during deposition, and $N_2$ plasma hardening. The introduction of N2 in the two-step processing enables a stackable and thermally stable device structure, is allowing integration of switch and memory devices for application in nano scale array circuits. Despite of its good threshold switching characteristics, AsTeGeSi-based switches have had key issues with reliability at a high temperature to apply resistive memory. This is usually due to a change in a Te concentration. However, our chalconitride switches(AsTeGeSiN) show high temperature stability as well as high current density over $1.1{\times}10^7A/cm^2$ at $30{\times}30(nm^2)$ celll. A cycling performance of the switch was over $10^8$ times. In addition, we demonstrated a memory cell consisted of 1 switch-1 resistor (1S-1R) stack structure using a TaOx resistance memory with the AsTeGeSiN select device.

A Study on the molecular structure and molecular weight control of styrene films by plasma polymerization (플라즈마 중합법에 의한 스티렌 박막의 분자 구조 및 분자량 제어에 관한 연구)

  • 김종택;최충양;박종관;박응춘;이덕출
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.213-219
    • /
    • 1997
  • The plasma polymerized styrene films were prepared by using an inter-electrode capacitively coupled gas-flow-type reactor, and the effects of plasma polymerization condition on the molecular weight distribution were investigated by Fourier Transform Infrared (FT-IR), Pyrolysis Gas Chromatography(PyGC), Differential Scanning Calorimetry(DSC) and Gel Permeation Chromatography(GPC). From the above results, the very cross-linked films different from chemical characteristics of the starting monomer were taken out, and it is realized that the molecular structure, cross linking density, and molecular weight distribution could be controlled by changing the parameters such as deposition pressure, deposition power and gas flow rate. Accordingly, it is suggested that plasma polymerization method performed by inter-electrode capacitively coupled gas-flow-type reactor has good characteristics for manufacturing the functional organic thin films which can be applied in sensors, opto-electric device, photo-resist by changing the polymerization parameters.

  • PDF

Small Signal Response Characteristics of Microwave Reflectometry (마이크로파 Reflectometry의 소신호 응답 특성)

  • 방성근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.699-704
    • /
    • 2003
  • The characteristics of microwave reflectometry as a non-invasive device to examine the density distribution of inhomogeneous media using the technology of FM radar is presented. The microwave reflectometry system requires an optimized system hardware and the understanding of system response from the density distribution in order to provide the system solution to describe the object under test quantitatively. Among the applications, the use of microwave reflectomeoy in the area of applied plasma physics has been newly proposed and the number of usage is found to be increasing gradually. The microwave reflectometry systems that depend on the nature of the object under test are described. The experimental method to characterize the system is explained and the experimental results on the wavenumber dependence and the sensitivity on density perturbation are presented as well as the comparison to the results from the one dimensional numerical simulations.

Development of HCP Device for Dye Laser Pumping Source (색소레이저 펌핑을 위한 HCP의 개발)

  • 오철한;박덕규;이성만
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.9
    • /
    • pp.375-379
    • /
    • 1986
  • The HCP(Hypocycloidal Pinch) device for plasma focus was modified for a pumping source of the dye laser, and the spectral distribution and time behavior of its light pulses were investigated by using a UV spectrometer, 70 MHz CRO and Si-PIN photodiode detector. An array of multiple stages of HCP and narrower electrode gaps were chosen in order to make a more uniform discharge along the HCP axis. The possible spectral range for the pumping of dye laser is 360-620nm, when the HCP is operated at 5-8kv of apllied voltage and 50-150Torr of Ar fill gas pressure. The rise-time and FWHM of light pulses from the HCP are 5us and 30-50us respectively when it is operated under the same conditions as above.

  • PDF