• 제목/요약/키워드: plant pathogenic fungi

검색결과 307건 처리시간 0.027초

Fungal Endophytes in Roots of Aralia Species and Their Antifungal Activity

  • Paul, Narayan Chandra;Kim, Won-Ki;Woo, Sung-Kyoon;Park, Myung-Soo;Yu, Seung-Hun
    • The Plant Pathology Journal
    • /
    • 제23권4호
    • /
    • pp.287-294
    • /
    • 2007
  • Endophytic fungi were isolated from surface sterilized root tissues of Aralia elata and Aralia continentalis, collected from farmer's field in Chungnam province, Republic of Korea, in 2005. Based on ITS sequence analysis, 24 fungal genera were characterized from 359 isolates, belonging to 22 Ascomycota, 1 Glomeromycota and 1 Oomycota. Strumella, Rhizopycnis and Entrophospora in A. elata and Rhizopycnis and Leptosphaeria in A. continentalis were the most abundant taxa. Out of 24 genera, Entrophospora, Leptodontidium, Neoplaconema, Paraconiothyrium, Rhizopycnis, Strumella and Tumularia were new to Korea. A total of 110 isolates were tested for antifungal activities against six plant pathogenic fungi. Out of these, 39 isolates showed antifungal activity against at least one plant pathogenic fungi. Four isolates of Pyrenochaeta, 1 isolate of Entrophospora and 1 unidentified fungus strongly inhibited the growth of six plant pathogenic fungi.

Screening for In Vitro Antifungal Activity of Soil Bacteria Against Plant Pathogens

  • Chang, Sung-Hwan;Lee, Jung-Yeop;Kim, Ki-Deok;Hwang, Byung-Kook
    • Mycobiology
    • /
    • 제28권4호
    • /
    • pp.190-192
    • /
    • 2000
  • Antifungal bacteria for biological control of plant diseases or production of novel antibiotics to plant pathogens were isolated in 1997 from various soils of Ansung, Chunan, Koyang, and Paju in Korea. Sixty-four bacterial strains pre-screened from approximately 1,400 strains were tested on V-8 juice agar against eight plant pathogenic fungi using in vitro bioassay technique for inhibition of mycelial growth. Test pathogens were Alternaria mali, Colletotrichum gloeosporioides, C. orbiculare, Fusarium oxysporum f. sp. cucumerinum, F. oxysporum f. sp. lycopersici, Magnaporthe grisea, Phytophthora capsici, and Rhizoctonia solani. A wide range of antifungal activity of bacterial strains was found against the pathogenic fungi, and strain RC-B77 showed the best antifungal activity. Correlation analysis between inhibition of each fungus and mean inhibition of all eight fungi by 64 bacterial strains revealed that C. gloeosporioides would be best appropriate for detecting bacterial strains producing antibiotics with potential as biocontrol agents for plant pathogens.

  • PDF

Numerical Identification of Streptomyces fIaveus Producing Antibiotic Substances Inhibitory to Plant Pathogenic Fungi

  • Lee, Jung-Yeop;Kim, Beom-Seok;Hwang, Byung-Kook
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권6호
    • /
    • pp.324-334
    • /
    • 1995
  • The actinomycete strain A 11 was antagonistic to plant pathogenic fungi Phytophthora capsid and Magnaporthe grisea. Based on the diaminopimelic acid (DAP) type and morphological characteristics examined by scanning electron microscopy, the strain A 11 was confirmed to belong to the genus Streptomyces. Based on Willcox probability and similarity level, the strain A 11 was numerically identified as Streptomyces flaveus using TAXON program of Ward and Goodfellow. Antibiotic production of S. flaveus strain A 11 was most favorable when cultured on glycerol yeast extract peptone (GYP) agar for 20 days at $28^{\circ}C$. The crude antibiotics from solid GYP agar cultures of the strain A 11 were most effective against Phytophthora capsici and Sclerotinia sclerotiorum among the fungi tested. Antifungal activity of the antibiotics against Alternaria solani, Botryosphaeria dothidea, Cercospora capsici, Magnaporthe grisea, and Rhizoctonia solani was somewhat high, whereas Colletotrichum gloeosporioides and Fusarium oxysporum f. sp. cucumerinum were rarely inhibited even at high concentrations.

  • PDF

곤충의 식물병원성 진균에 대한 항균활성 (Antifungal Activities of Insect Against the Plant Pathogenic Fungi)

  • 김경아;이경렬;송경식;노시갑
    • 한국잠사곤충학회지
    • /
    • 제48권2호
    • /
    • pp.68-72
    • /
    • 2006
  • 본 연구는 식물병원성곰팡이에 대한 곤충 혈액 및 유충체의 항곰팡이 활성을 조사하였다. 집누에, 장수풍뎅이, 흰점박이 꽃무지 모두 곰팡이 저해활성을 나타냈으며, 집누에의 계통간 비교에서는 1087계통의 활성이 가장 높았다. 또한, 혈액보다는 유충체를 이용한 경우가 더 강한 항곰팡이 활성을 나타냈다. 곤충의 항곰팡이 활성은 곰팡이균주에 따라 다르며, 본 연구에 사용된 3종은 A. panax, C. gloeosporioides 및 P. oryzae 균에 항곰팡이 활성을 가진다.

A New Composition of Nanosized Silica-Silver for Control of Various Plant Diseases

  • Park Hae-Jun;Kim Sung-Ho;Kim Hwa-Jung;Choi Seong-Ho
    • The Plant Pathology Journal
    • /
    • 제22권3호
    • /
    • pp.295-302
    • /
    • 2006
  • The present study addressed the efficacy of nanosized silica-silver for controlling plant pathogenic microorganisms. The nanosized silica-silver consisted of nano-silver combined with silica molecules and water soluble polymer, prepared by exposing a solution including silver salt, silicate and water soluble polymer to radioactive rays. The nanosized silica-silver showed antifungal activity against the tested phytopathogenic fungi at 3.0 ppm with varied degrees. In contrast, a number of beneficial bacteria or plant pathogenic bacteria were not significantly affected at 10 ppm level but completely inhibited by 100 ppm of nanosized silicasilver. Among the tested plant pathogenic fungi, the new product effectively controlled powdery mildews of pumpkin at 0.3 ppm in both field and greenhouse tests. The pathogens disappeared from the infected leaves 3 days after spray and the plants remained healthy thereafter. Our results suggested that the product developed in this study was effective in controlling various plant fungal diseases.

Inhibitory Effects of Super Reductive Water on Plant Pathogenic Fungi

  • Hur, Jae-Seoun;Kim, Hae-Jin;Oh, Soon-Ok;Koh, Young-Jin;Kwak, Young-Se;Lee, Choong-Il
    • The Plant Pathology Journal
    • /
    • 제18권5호
    • /
    • pp.284-287
    • /
    • 2002
  • The antifungal activity of super reductive water (SRW) against plant pathogenic fungi was examined to extend its application to integrated pest management (IPM) for plant diseases. Diluted solutions ($\times$1/10, $\times$1/25, and $\times$1/50) of SRW inhibited fungal growth of kiwifruit soft rot pathogen, Diaporthe actinidiae, in a concentration dependent manner, When kiwifruits were inoculated on wounds with mycelium blocks, stock and diluted solutions successfully inhibited the disease development. In addition to the high pH of the SRW, fungistatic activity was also considered as the cause of the antifungal effect against the pathogen. Whereas conidial germination of Magnaporthe grisea was not affected by the diluted SRW solutions, appressorium formation was significantly inhibited in a concentration dependent manner, With little harmfulness to human health and environment SRW could be used to control plant pathogenic fungi, particularly appressorium-forming fungal pathogens.

Antifungal Activity of Paenibacillus kribbensis Strain T-9 Isolated from Soils against Several Plant Pathogenic Fungi

  • Xu, Sheng Jun;Hong, Sae Jin;Choi, Woobong;Kim, Byung Sup
    • The Plant Pathology Journal
    • /
    • 제30권1호
    • /
    • pp.102-108
    • /
    • 2014
  • The bacterial strain T-9, which shows strong antifungal activity, is isolated from the soils of Samcheok, Gangwondo and identified as Paenibacillus kribbensis according to morphological and taxonomic characteristics and 16S rRNA gene sequence analysis. The P. kribbensis strain T-9 strongly inhibits the growth of various phytopathogenic fungi including Botrytis cinerea, Colletotricum acutatum, Fusarium oxysporum f. sp. radicis-lycopersici, Magnaporthe oryzae, Phytophthora capsici, Rhizoctonia solani, and Sclerotium cepivorum in vitro. Also, the P. kribbensis strain T-9 exhibited similar or better control effects to plant diseases than in fungicide treatment through in vivo assays. In the 2-year greenhouse experiments, P. kribbensis strain T-9 was highly effective against clubroot. In the 2-year field trials, the P. kribbensis strain T-9 was less effective than the fungicide, but reduced clubroot on Chinese cabbage when compared to the control. The above-described results indicate that the strain T-9 may have the potential as an antagonist to control various phytopathogenic fungi.

Screening for Antifungal Endophytic Fungi Against Six Plant Pathogenic Fungi

  • Park, Joong-Hyeop;Park, Ji-Hyun;Choi, Gyung-Ja;Lee, Seon-Woo;Jang, Kyoung-Soo;Choi, Yong-Ho;Cho, Kwang-Yun;Kim, Jin-Cheol
    • Mycobiology
    • /
    • 제31권3호
    • /
    • pp.179-182
    • /
    • 2003
  • A total of 187 endophytic fungi were isolated from 11 plant species, which were collected from 11 locations in Korea. Their antifungal activities were screened in vivo by antifungal bioassays after they were cultured in potato dextrose broth and rice solid media. Antifungal activity against plant pathogenic fungi such as Magnaporthe grisea(rice blast), Corticium sasaki(rice sheath blight), Botrytis cinerea(tomato gray mold), Phytophthora infestans(tomato late blight), Puccinia recondita(wheat leaf rust), and Blumeria graminis f. sp. hordei(barley powdery mildew) was determined in vivo by observing the inhibition of plant disease development. Twenty(11.7%) endophytic fungi fermentation broths were able to control, by more than 90%, at least one of the six plant diseases tested. Among 187 liquid broths, the F0010 strain isolated from Abies holophylla had the most potent disease control activity; it showed control values of more than 90% against five plant diseases, except for tomato late blight. On the other hand, fourteen(7.5%) solid culture extracts exhibited potent disease control values of more than 90% against one of six plant diseases. The screening results of this study strongly suggested that metabolites of plant endophytic fungi could be good potential sources for screening programs of bioactive natural products.

Identification and Characterization of Pathogenic and Endophytic Fungal Species Associated with Pokkah Boeng Disease of Sugarcane

  • Hilton, Angelyn;Zhang, Huanming;Yu, Wenying;Shim, Won-Bo
    • The Plant Pathology Journal
    • /
    • 제33권3호
    • /
    • pp.238-248
    • /
    • 2017
  • Pokkah Boeng is a serious disease of sugarcane, which can lead to devastating yield losses in crop-producing regions, including southern China. However, there is still uncertainty about the causal agent of the disease. Our aim was to isolate and characterize the pathogen through morphological, physiological, and molecular analyses. We isolated sugarcane-colonizing fungi in Fujian, China. Isolated fungi were first assessed for their cell wall degrading enzyme capabilities, and five isolates were identified for further analysis. Internal transcribed spacer sequencing revealed that these five strains are Fusarium, Alternaria, Phoma, Phomopsis, and Epicoccum. The Fusarium isolate was further identified as F. verticillioides after Calmodulin and EF-$1{\alpha}$ gene sequencing and microscopic morphology study. Pathogenicity assay confirmed that F. verticillioides was directly responsible for disease on sugarcane. Co-inoculation of F. verticillioides with other isolated fungi did not lead to a significant difference in disease severity, refuting the idea that other cellulolytic fungi can increase disease severity as an endophyte. This is the first report characterizing pathogenic F. verticillioides on sugarcane in southern China.

Antifungal Activity of Securinine against Some Plant Pathogenic Fungi

  • Singh, Ashok K.;Pandey, M.B.;Singh, Sarita;Singh, Anil K.;Singh, U.P.
    • Mycobiology
    • /
    • 제36권2호
    • /
    • pp.99-101
    • /
    • 2008
  • The alkaloid securinine was assessed against spore germination of some plant pathogenic and saprophytic fungi (Alternaria alternata, Alternaria brassicae, Alternaria brassicicola, Curvularia lunata, Curvularia maculans, Curvularia pallenscens, Colletotrichum musae, Colletotrichum sp., Erysiphe pisi, Helminthosporium echinoclova, Helminthosporium spiciferum, Heterosporium sp.). Spore germinations of all the tested fungi were inhibited. Alternaria brassicicola, C. lunata, C. pallenscens and H. spiciferum were highly sensitive as complete inhibition of spore germination was observed at very low concentrations (200 ppm).