DOI QR코드

DOI QR Code

Antifungal Activity of Paenibacillus kribbensis Strain T-9 Isolated from Soils against Several Plant Pathogenic Fungi

  • Xu, Sheng Jun (Department of Plant Science, Gangneung-Wonju National University) ;
  • Hong, Sae Jin (Department of Plant Science, Gangneung-Wonju National University) ;
  • Choi, Woobong (Department of Biotechnology and Bioengineering, Dongeui University) ;
  • Kim, Byung Sup (Department of Plant Science, Gangneung-Wonju National University)
  • Received : 2013.06.14
  • Accepted : 2013.10.13
  • Published : 2014.03.01

Abstract

The bacterial strain T-9, which shows strong antifungal activity, is isolated from the soils of Samcheok, Gangwondo and identified as Paenibacillus kribbensis according to morphological and taxonomic characteristics and 16S rRNA gene sequence analysis. The P. kribbensis strain T-9 strongly inhibits the growth of various phytopathogenic fungi including Botrytis cinerea, Colletotricum acutatum, Fusarium oxysporum f. sp. radicis-lycopersici, Magnaporthe oryzae, Phytophthora capsici, Rhizoctonia solani, and Sclerotium cepivorum in vitro. Also, the P. kribbensis strain T-9 exhibited similar or better control effects to plant diseases than in fungicide treatment through in vivo assays. In the 2-year greenhouse experiments, P. kribbensis strain T-9 was highly effective against clubroot. In the 2-year field trials, the P. kribbensis strain T-9 was less effective than the fungicide, but reduced clubroot on Chinese cabbage when compared to the control. The above-described results indicate that the strain T-9 may have the potential as an antagonist to control various phytopathogenic fungi.

Keywords

References

  1. Ash, C., Priest, F. G. and Collins, M. D. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Ant. Van Leeuwen. 64:253-260.
  2. Bailey, K. L. and Lazarovits, G. 2003. Suppressing soil-borne diseases with residue management and organic amendments. Soil Till. Res. 72:169-180. https://doi.org/10.1016/S0167-1987(03)00086-2
  3. Berge, O., Guinebretiere, M. H., Achouak, W., Normand, P. and Heulin, T. 2002. Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int. J. Syst. Evol. Microbiol. 52:607-616. https://doi.org/10.1099/00207713-52-2-607
  4. Choi, K. H., Yi, Y. S., Lee, S. L., Kang, K. R., Lee, E. J., Hong, S. W., Young, J. M., Park, Y. H., Choi, G. J., Kim, B. J. and Lim, Y. H. 2007. Microorganisms against Plasmodiophora brassicae. J. Microbiol. Biotechnol. 17:873-877.
  5. Emmert, E. A. and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram) positive perspective. FEMS Microbiol. Lett. 171:1-9. https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
  6. Fernando, W. G. D., Ramarathnam, R., Krishnamoorthy, A. S. and Savchuk, S. C. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem. 37:955-964. https://doi.org/10.1016/j.soilbio.2004.10.021
  7. Fortes, T. O., Alviano, D. S. and Tupinamba, G. 2008. Production of an antimicrobial substance against Cryptococcus neoformans by Paenibacillus brasilensis Sa3 isolated from the rhizosphere of Kalanchoe brasoloensis. Microbiol. Res. 163:200-207. https://doi.org/10.1016/j.micres.2006.05.003
  8. Garbeva, P., van Veen, J. A. and van Elsas, J. D. 2003. Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb. Ecol. 45:302-316. https://doi.org/10.1007/s00248-002-2034-8
  9. He, Z. G., Kisla, D., Zhang, L. W., Yuan, C. H., Green-Church, K. B. and Yousef, A. E. 2007. Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin.Appl. Environ. Microbiol. 73:168-178. https://doi.org/10.1128/AEM.02023-06
  10. Huang, X. Q., Zhang, N., Yong, X. Y., Yang, X. M. and Shen, Q. R. 2012. Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pmilus SQR-N43. Microbiol. Res. 167:135-143. https://doi.org/10.1016/j.micres.2011.06.002
  11. Jin, R. D., Han, T. H., Kim, Y. W. and Kim, K. Y. 2006. Suppression of clubroot formation in Chinese cabbage by the chitin compost and broth. Agric. Chem. Biotechnol. 49:171-175.
  12. Kim, B. J., Choi, G. J., Cho, K. Y., Yang, H. J., Shin, C. S., Lee, C. H. and Lim, Y. H. 2002. Antifungal activities against Plasmodiophora brassicae causing club root. J. Microbiol. Biotechnol. 12:1022-1025.
  13. Kim, H. S., Sang, M. K., Jung, H. W., Jeun, Y. C., Myung, I. S. and Kim, K. D. 2012. Identification and characterization of Chryseobacterium wanjuense strain KJ9C8 as a biocontrol agent of Phytophthora blight of pepper. Crop Prot. 32:129-137. https://doi.org/10.1016/j.cropro.2011.10.018
  14. Kim, S. H., Shin, C. S., Moon, S. G., Yi, Y. S., Choi, G. J., Cho, K. Y., Song, J. Y. and Lim, Y. H. 2004. Isolation and characterization of Streptomyces sp. KACC 91027 against Plasmodiophora brassicae. J. Microbiol. Biotechnol. 14:220-223.
  15. Kim, W. I., Won, K. C., Kim, S. N., Chu, H. S., Ryu, K. Y., Yun, J. C. and Park, C. S. 2011. Genetic diversity of cultivable plant growth-promoting rhizobacteria in Korea. J. Microbiol. Biotechnol. 21:777-790. https://doi.org/10.4014/jmb.1101.01031
  16. Larkin, R. P. and Fravel, D. R. 2002. Effect of varying environmental conditions on biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology 92:1160-1166. https://doi.org/10.1094/PHYTO.2002.92.11.1160
  17. Lee, S. O., Choi, G. J., Choi, Y. H., Jang, K. S., Park, D. J., Kim, C. J. and Kim, J. C. 2008. Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. J. Microbiol. Biotechnol. 18:1741-1746.
  18. Li, Q. L., Ning, P., Zheng, L., Huang, J. B., Li, G. Q. and Hsiang, T. 2012. Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biol. Control 61:113-120. https://doi.org/10.1016/j.biocontrol.2011.10.014
  19. Liu, W. W., Mu, W., Zhu, B. Y., Du, Y. C. and Liu, F. 2008. Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agric. Sci. China 7:1104-1114. https://doi.org/10.1016/S1671-2927(08)60153-4
  20. Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H. M., Piceno, Y. M., DeSantis, T. Z., Andersen, G. L., Bakker, P. A. H. M. and Raaijmakers, J. M. 2011. Deciphering the rhizosphere microbiome frome for disease-suppressive bacteria. Science 332:1097-1100. https://doi.org/10.1126/science.1203980
  21. Nishiguchi, M. K., Doukakis, P., Egan, M., Kizirian, D., Phillips, A., Prendini, L., Rosenbaum, H. C., Torres, E., Wyner, Y., De- Salle, R. and Giribet, G. 2002. DNA isolation procedures. In: Methods and Tools in Biosciences and Medicine: Techiques in molecular systematics and evolution, eds. by R. DeSalle, G. Giribet and W. Wheeler, pp. 279-280. Birkhauser Verlag, Basel, Switzerland.
  22. Raza, W., Yang, W. and Shen, Q. R. 2008. Paenibacillus polymyxa: antibiotics, hydrolytic enzymes and hazard assessment. J. Plant Pathol. 90:419-430.
  23. Ryu, C. M., Kim, J. W., Choi, O. H., Park, S. Y., Park, S. H. and Park, C. S. 2005. Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. J. Microbiol. Biotechnol. 15:984-991.
  24. Takagi, H., Shida, O., Kadowaki, K., Komagata, K. and Udaka, S. 1993. Characterization of Bacillus brevis with descriptions of Bacillus migulanus sp. nov., Bacillus choshinensis sp. nov., Bacillus parabrevis sp. nov., and Bacillus galactophilus sp. nov. Int. J. Syst. Evol. Microbiol. 43:221-231.
  25. von der Weid, I., Duarte, G. F., van Elsas, J. D. and Seldin, L. 2002. Paenibacillus brasilensis sp. nov., a novel nitrogenfixing species isolated from the maize rhizosphere in Brazil. Int. J. Syst. Evol. Microbiol. 52:2147-2153. https://doi.org/10.1099/ijs.0.02272-0
  26. von der Weid, I., Alviano, D. S., Santos, A. L. S., Soares, R. M. A., Alviano, C. S. and Seldin, L. 2003. Antimicrobial activity of Paenibacillus peoriae strains NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J. Appl. Microbiol. 95:1143-1151. https://doi.org/10.1046/j.1365-2672.2003.02097.x
  27. von der Weid, I., Artutsson, V., Seldin, L. and Jansson, J. K. 2005. Antifungal and root surface colonization properties of GFPtagged Paenibacillus brasilensis PB177. World J. Microbiol. Biotechnol. 12:1591-1597.
  28. Wang, J., Huang, Y., Lin, S., Liu, F., Song, Q., Peng, Y. L. and Zhao, L. 2012. A strain of Streptomyces griseoruber isolated from rhizospheric soil of Chinese cabbage as antagonist to Plasmodiophora brassicae. Ann. Microbiol. 62:247-253. https://doi.org/10.1007/s13213-011-0253-2
  29. Yoon, J. H., Oh, H. M., Yoon, B. D., Kang, K. H. and Park, Y. H. 2003. Paenibacillus kribbensis sp. nov. and Paenibacillus terrae sp. nov., bioflocculants for efficient harvesting of algal cells. Int. J. Syst. Evol. Microbiol. 53:295-301. https://doi.org/10.1099/ijs.0.02108-0

Cited by

  1. Structural analysis and enhanced production of fusaricidin from Paenibacillus kribbensis CU01 isolated from yellow loess vol.57, pp.6, 2017, https://doi.org/10.1002/jobm.201600692
  2. A Brevibacillus sp. antagonistic to mycotoxigenic Fusarium spp. vol.87, 2015, https://doi.org/10.1016/j.biocontrol.2015.04.010
  3. Antagonistic Activities of Bacillus spp. Strains Isolated from Tidal Flat Sediment Towards Anthracnose Pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea vol.31, pp.2, 2015, https://doi.org/10.5423/PPJ.OA.03.2015.0036
  4. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review vol.107, 2017, https://doi.org/10.1016/j.ecoleng.2017.06.058
  5. Characterization of antifungal Paenibacillus illinoisensis strain UKCH21 and its chitinolytic properties vol.10, pp.34, 2016, https://doi.org/10.5897/AJMR2016.8248
  6. Biological Control of Apple Anthracnose by Paenibacillus polymyxa APEC128, an Antagonistic Rhizobacterium vol.32, pp.3, 2016, https://doi.org/10.5423/PPJ.OA.01.2016.0015
  7. Antimicrobial Cyclic Peptides for Plant Disease Control vol.31, pp.1, 2015, https://doi.org/10.5423/PPJ.RW.08.2014.0074
  8. Biocontrol Potential Against Fusarium oxysporum f. sp. lycopersici and Alternaria solani and Tomato Plant Growth Due to Plant Growth–Promoting Rhizobacteria vol.23, pp.4, 2017, https://doi.org/10.1080/19315260.2016.1271850
  9. Antifungal activity of the bioactive substance from Bacillus atrophaeus strain HAB-5 and its toxicity assessment on Danio rerio 2017, https://doi.org/10.1016/j.pestbp.2017.06.006