• Title/Summary/Keyword: plant mixture

Search Result 884, Processing Time 0.024 seconds

A Two-Strain Mixture of Rhizobacteria Elicits Induction of Systemic Resistance Against Pseudomonas syringae and Cucumber Mosaic Virus Coupled to Promotion of Plant Growth on Arabidopsis thaliana

  • Ryu Choong-Min;Murphy John F.;Reddy M.S.;Kloepper Joseph W.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.280-286
    • /
    • 2007
  • We evaluated a commercial biopreparation of plant growth-promoting rhizobacteria (PGPR) strains Bacillus subtilis GB03 and B. amyloliquefaciens IN937a formulated with the carrier chitosan (Bio Yield) for its capacity to elicit growth promotion and induced systemic resistance against infection by Cucumber Mosaic Virus (CMV) and Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana. The biopreparation promoted plant growth of Arabidopsis hormonal mutants, which included auxin, gibberellic acid, ethylene, jasmonate, salicylic acid, and brassinosteroid insensitive lines as well as each wild-type. The biopreparation protected plants against CMV based on disease severity in wild-type plants. However, virus titre was not lower in control plants and those treated with biopreparation, suggesting that the biopreparation induced tolerance rather than resistance against CMV. Interestingly, the biopreparation induced resistance against CMV in NahG plants, as evidenced by both reduced disease severity and virus titer. The biopreparation also elicited induced resistance against P. syringae pv. tomato in the wild-type but not in NahG transgenic plants, which degrade endogenous salicylic acid, indicating the involvement of salicylic acid signaling. Our results indicate that some PGPR strains can elicit plant growth promotion by mechanisms that are different from known hormonal signaling pathways. In addition, the mechanism for elicitation of induced resistance by PGPR may be pathogen-dependent. Collectively, the two-Bacilli strain mixture can be utilized as a biological inoculant for both protection of plant against bacterial and viral pathogens and enhancement of plant growth.

Field Application of Epoxy Asphalt Mixture for Steel Bridge Deck (에폭시 수지를 이용한 아스팔트 혼합물의 강상판 적용성 평가)

  • Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.2
    • /
    • pp.206-213
    • /
    • 2013
  • The paper presents the field applications and evaluation results of solid epoxy asphalt mixture for steel bridge deck. The material was developed in Japan. The material properties of epoxy asphalt mixture were evaluated through various literature review, and the mix design and mixture evaluation were conducted. According to the research results, the application of epoxy asphalt mixture for steel bridge deck was noticeable compare to the conventional ones. In addition, results from 3D finite element analysis showed that the performance of epoxy asphalt mixture for steel bridge deck was proved to be satisfied. As a result, a pilot test section was constructed using the epoxy asphalt mixture produced from conventional batch plant system. BPT test results showed that friction of the epoxy asphalt mixture was higher than the requirements compare to that of the conventional one.

Evaluation of a Mixture of Plant Protein Source as a Partial Fish Meal Replacement in Diets for Juvenile Olive Flounder Paralichthys olivaceus (식물성 단백질 혼합물을 이용한 넙치(Paralichthys olivaceus) 사료 내 어분대체 가능성 평가)

  • Kim, Min-Gi;Shin, Jaehyeong;Lee, Chorong;Lee, Bong-Joo;Hur, Sang-Woo;Lim, Sang Gu;Lee, Kyeong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.4
    • /
    • pp.374-381
    • /
    • 2019
  • This study was conducted to examine a mixture of plant protein sources as a fish meal (FM) substitute. Two feeding trials were carried out using similar dietary formulations but different FM levels. In Experiments 1 and 2, the basal diets were formulated to contain 65% and 60% of FM, respectively. The other five diets were formulated replacing FM by 10, 15, 20, 25 and 30% with a mixture of soybean meal, wheat gluten and soy protein concentrate. Three synthetic amino acids (lysine, threonine and methionine) were added to the test diet. Groups of fish in experiment 1 ($6.76{\pm}0.03g$) and experiment 2 ($32.5{\pm}0.1g$) were fed one of the experimental diets for 7 and 9 weeks, respectively. Each experiment was carried out in triplicate. There were no significant differences among groups in terms of growth performance, feed utilization, survival or hematological parameters in either experiment. The results indicated that a mixture of soybean meal, wheat gluten and soy protein concentrate, supplemented with three synthetic amino acid, can replace fish meal by up to 30% in diets for juvenile olive flounder.

Fish Meal Replacement with a Mixture of Plant and Animal Protein Sources in Extruded Pellet (EP) Diet for Red Seabream Pagrus major at Low Water Temperature (저수온기 참돔(Pagrus major) EP사료 내 동·식물성단백질 혼합물의 어분 대체)

  • Lim, Jongho;Kim, Min-Gi;Lim, Hyunwoon;Lee, Bong-Joo;Lee, Seunghyung;Hur, Sang-Woo;Kim, Kang-Woong;Lee, Kyeong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.3
    • /
    • pp.350-357
    • /
    • 2021
  • This study aimed to evaluate how fish meal (FM) replacement in diets with a mixture of animal and plant protein sources affect growth performance, feed utilization, hematological parameters and innate immunity of red seabream Pagrus major. A control FM diet was formulated to contain 65% FM (Con). Two other diets were prepared replacing FM in the control diet with a mixture of protein sources (wheat gluten, soy-protein concentrate, tankage meal, and poultry by-product meal) by 30 and 40% (FM30 and FM40, respectively). Total 300 red seabream (body weight, 77.6±0.3g) were distributed to 12 tanks (300 L) in 4 replicates per diet. The fish were fed the diets to apparent satiation for 19 weeks. After the feeding trial, no significant differences could be observed in growth performance, feed utilization, hematological parameters, innate immunity, and survivals among all the dietary treatments. This long-term feeding trial at low water temperature (13.8-17.5℃) indicates that a proper mixture ratio of wheat gluten, soy protein concentrate, tankage meal, and poultry by-product meal can replace FM up to 40% in red seabream diets.

Inhibitory Effect of Alantolactone on the Growth of Plant and Interaction with L-Cysteine (Alantolactone이 식물생장에 미치는 영향과 L-Cysteine과의 상호작용)

  • 권영명
    • Journal of Plant Biology
    • /
    • v.17 no.1
    • /
    • pp.9-14
    • /
    • 1974
  • Inhibitory effect of alantolactone and isoalantolactone was shwon in Avena straight growth test and in the formation of adventitious root in Phaseolus seedling. However, di-, and tetrahydroalantolactones given no effect on the elongation and the rooting. Inhibitory effect of alantolactone could partly be removed by cysteine, cystine, and reduced glutthione. The plant materials were made less sensitive to alantolactone by the pretreatment of cysteine, but cysteine supplied after the treatment of alantolactone brought about no effect on the action of alantolactone. A new spot was shown on TLC plate from the mixture of alantolactone and cysteine, indicating that alantolactone can be inactivated by cysteine, not cystine, without any biological processes.

  • PDF

Control of Powdery Mildew on Solanaceous Crops by Using COY (Cooking Oil and Yolk Mixture) in the Greenhouse (난황유를 이용한 가지과 작물의 흰가루병 방제)

  • Kwon, Jin-Hyeuk;Shim, Chang-Ki;Jee, Hyeong-Jin;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.15 no.1
    • /
    • pp.23-29
    • /
    • 2009
  • Cooking oil and yolk mixture (COY), a environmentally acceptable plant protection agent, and COY+$CaCO_3$+neem oil mixture were studied to control the powdery mildew occurring on eggplant, paprika, cherry tomato and maturity tomato in glass houses and vinyl houses during 2005 to 2007. The morphological changes of the pathogenic fungi on the leaf surface before and after treatment of COY were observed. COY made of rape seed oil and COY+$CaCO_3$+neem oil mixture were sprayed three times with 5 days interval to foliar parts of eggplant, paprika and tomato and the disease development were examined 5 days after final spray. In eggplant, the control efficacy of COY to powdery mildew was 94.6%. In paprika, the control efficacy of COY to powdery mildew was 91.6% and that of COY+$CaCO_3$+neem oil mixture was 96.2% that revealed little higher than COY itself. In tomatoes(cherry or maturity tomato), the control efficacy of COY were about 91 %, however, when COY mixture were sprayed to tomato leaves and stems the powdery mildew was controlled completely. Typical and healthy mycelia, conidiophores and condia were observed through scanning electron microscope in COY unsprayed leaf surface, on the other hand destroyed and winkled mycelia and conidiophores were observed in COY treated leaves regardless host plants nor taxonomic differences of fungi.

Reducing Phosphorus Release from Paddy Soil by Coal Ash and Phospho-Gypsum Mixture

  • Lee, Chang-Hoon;Lee, Yong-Bok;Lee, Hyub;Ha, Byung-Yun;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.12-16
    • /
    • 2005
  • As a silicate source to rice, a coal ash was selected and mixed with phosphor-gypsum (50:50, wt $wt^{-1}$) to reduce the potential of boron toxicity and to supply calcium element. We expected that high con tent of calcium in this mixture might convert water-soluble phosphorus to less soluble forms and then reduce the release of soil phosphorus to surface runoff. The mixture was applied with the rate of 0, 20, 40, and 60 Mg $ha^{-1}$ in paddy soil (Nagdong series, a somewhat excessively drained loamy fine sand) in Daegok, Jinju, Korea The mixture reduced significantly water-soluble phosphorus (W-P) in the surface soils by shifting from W-P and Fe-P to Ca-P and Al-P during whole rice cultivation. In contrast with W-P, plant available phosphorus increased significantly with the mixture application due to high content of phosphorus and silicate in the mixture. The mixture of coal ash and phosphor-gypsum (50:50, wt $wt^{-l}$) would be a good alternative to reduce a phosphorus export in rice paddy soil together with increasing rice yields.

Soil conditions during cultivation affect the total phenolic and flavonoid content of rosemary

  • Seo, Ji Won;Kim, Soo Kyung;Yoo, Ji Hye;Kim, Myong Jo;Seong, Eun Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.2
    • /
    • pp.89-92
    • /
    • 2022
  • In this study, the effects of soil conditions on antioxidant activities of the aerial and underground parts of rosemary were assessed to determine the most effective soil conditions for cultivation. The antioxidant activity was the highest (51.58±2.93 ㎍/mL) when cultivated in the mixture of gardening soil and vermiculite using DPPH assay. The antioxidant activity of underground parts the highest (127.48±12.38 ㎍/mL) when cultivated in the mixture of soil, vermiculite, and perlite. ABTS assay showed that the antioxidant activity of aerial parts was 230.34±57.93 ㎍·mL-1 when cultivated in the mixture of gardening soil and vermiculite and that of underground parts was 320.98±16.04 ㎍·mL-1 when cultivated in the mixture of gardening soil, vermiculite, and perlite. The total phenolic content of aerial parts was the highest (155.25±2.96 mg GAE/g) when cultivated in the mixture of gardening soil. The total flavonoid content of aerial parts was the highest (67.32±5.27 mg QE/g) when cultivated in the mixture of gardening soil. Therefore, the mixture of gardening soil, vermiculite, and perlite is superior to gardening soil alone for cultivation of rosemary to increase its antioxidant activity as well as total phenolic and flavonoid content.

Hydroponic Nutrient Solution and Light Quality Influence on Lettuce (Lactuca sativa L.) Growth from the Artificial Light Type of Plant Factory System (인공광 식물공장에서 수경배양액 및 광질 조절이 상추 실생묘 생장에 미치는 영향)

  • Heo, Jeong-Wook;Park, Kyeong-Hun;Hong, Seung-Gil;Lee, Jae-Su;Baek, Jeong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.225-236
    • /
    • 2019
  • BACKGROUND: Hydroponics is one of the methods for evaluating plant production using the inorganic nutrient solutions, which is applied under the artificial light conditions of plant factory system. However, the application of the conventional inorganic nutrients for hydroponics caused several environmental problems: waste from culture mediums and high nitrate concentration in plants. Organic nutrients are generally irrigated as a supplementary fertilizer for plant growth promotion under field or greenhouse conditions. Hydroponic culture using organic nutrients derived from the agricultural by-products such as dumped stems, leaves or immature fruits is rarely considered in plant factory system. Effect of organic or conventional inorganic nutrient solutions on the growth and nutrient absorption pattern of green and red leaf lettuces was investigated in this experiment under fluorescent lamps (FL) and mixture Light-Emitting Diodes (LEDs). METHODS AND RESULTS: Single solution of tomatoes (TJ) and kales (K) deriving from agricultural by-products including leaves or stems and its mixed solution (mixture ration 1:1) with conventional inorganic Yamazaki (Y) were supplied for hydroponics under the plant factory system. The Yamazaki solution was considered as a control. 'Jeockchima' and 'Cheongchima' lettuce seedlings (Lactuca sativa L.) were used as plant materials. The seedlings which developed 2~3 true leaves were grown under the light qualities of FL and mixed LED lights of blue plus red plus white of 1:2:1 mixture in energy ratio for 35 days. Light intensity of the light sources was controlled at 180 μmol/㎡/s on the culture bed. The single and mixture nutrient solutions of organic and/or inorganic components which controlled at 1.5 dS/m EC and 5.8 pH were regularly irrigated by the deep flow technique (DFT) system on the culture gutters. Number of unfolded leaves of the seedlings grown under the single or mixed nutrient solutions were significantly increased compared to the conventional Y treatment. Leaf extension of 'Jeockchima' under the mixture LED radiation condition was not affected by Y and YK or YTJ mixture treatments. SPAD value in 'Jeockchima' leaves exposed by FL under the YK mixture medium was approximately 45 % higher than under conventional Y treatment. Otherwise, the maximum SPAD value in the leaves of 'Cheongchima' seedlings was shown in YK treatment under the mixture LED lights. NO3-N contents in Y treatment treated with inorganic nutrient at the end of the experiment were up to 75% declined rather than increased over 60 % in the K and TJ organic treatment. CONCLUSION: Growth of the seedlings was affected by the mixture treatments of the organic and inorganic solutions, although similar or lower dry weight was recorded than in the inorganic treatment Y under the plant factory system. Treatment Y containing the highest NO3-N content among the considered nutrients influenced growth increment of the seedlings comparing to the other nutrients. However effect of the higher NO3-N content in the seedling growth was different according to the light qualities considered in the experiment as shown in leaf expansion, pigmentation or dry weight promotion under the single or mixed nutrients.