• Title/Summary/Keyword: plant growth fermentation

Search Result 108, Processing Time 0.021 seconds

Isolation and Characterization of an Antifungal and Plant Growth-Promoting Microbe

  • Park, Se Won;Yang, Hee-Jong;Seo, Ji Won;Kim, Jinwon;Jeong, Su-ji;Ha, Gwangsu;Ryu, Myeong Seon;Yang, Hee Gun;Jeong, Do-Youn;Lee, Hyang Burm
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.441-454
    • /
    • 2021
  • Fungal diseases including anthracnose, stem rot, blight, wilting, and root rot of crops are caused by phytopathogens such as Colletotrichum species, Sclerotinia sclerotiorum, Phytophthora species, and Fusarium oxysporum and F. solani which threaten the production of chili pepper. In this study, to identify biological control agents (BCAs) of phytopathogenic fungi, potentially useful Bacillus species were isolated from the field soils. We screened out five Bacillus strains with antagonistic capacity that are efficiently inhibiting the growth of phytopathogenic fungi. Bacillus species were characterized by the production of extracellular enzymes, siderophores, and indole-3-acetic acid (IAA). Furthermore, the influence of bacterial strains on the plant growth promoting activity and seedling vigor index were assessed using Brassica juncea as a model plant. Inoculation with Bacillus subtilis SRCM 121379 significantly increased the length of B. juncea shoots and roots by 45.6% and 52.0%, respectively. Among the bacterial isolates, Bacillus subtilis SRCM 121379 showed the superior enzyme activities, antagonistic capacity and plant growth promoting effects. Based on the experimental results, Bacillus subtilis SRCM 121379 (GenBank accession no. NR027552) was finally selected as a BCA candidate.

Biological Control and Plant-Growth Promotion by Bacillus Strains from Milk

  • Nautiyal Chandra Shekhar;Mehta Sangeeta;Singh Harikesh Bahadur
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.184-192
    • /
    • 2006
  • Six-hundred bacterial strains from human milk and milk from Sahiwal cows, Holstein Friesian cows, and buffaloes were screened for their ability to suppress phytopathogenic fungi under in vitro conditions. A consortium of 3 strains, viz., Bacillus lentimorbus B-30486 (B-30486), B. subtilis B-30487 (B-30487), and B. lentimorbus B-30488 (B-30488), isolated from Sahiwal cow milk resulted in better biological control and plant-growth promotion than single-strain treatments. For commercial-scale production of a bioinoculant, the solid-state fermentation of sugarcane agro-industrial residues, i.e., molasses, press mud, and spent wash, using the consortium of B-30486, B-30487, and B-30488, resulted in a value-added product, useful for enhancing plant growth. The application of the consortium to sugarcane fields infested with Fusarium moniliforme and Colletotrichum falcatum resulted in a reduction of mortality and significantly higher (P=0.05) plant height, number of tillers, and cane girth when compared with the control. Furthermore, under field conditions, the treatment of sugarcane with the consortium resulted in significantly (P=0.05) greater plant growth compared with nonbacterized plants. Accordingly, this is the first report on the effective use of bacteria isolated from milk for biological control and enhancing plant growth under field conditions. Furthormore, a solid-state fermentation technology was developed that facilitates the economic utilization of agro-industrial residues for environmental conservation and improving plant and soil health.

Effect of Continuous Application of Organic Farming Materials on the Soil Physicochemistry Property and Plant Growth, Yield and Components of Tomato (유기농 자재의 연용이 토양의 이화학적 성질과 토마토의 생육, 수량 및 체내성분에 미치는 영향)

  • 오주성;이종성;강경희;김회태;정원복;정순재
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.1
    • /
    • pp.75-89
    • /
    • 2001
  • This study the effects of the application of organic farming materials on the soil Physicochemistry property and plant growth, yield and components of Tomato were compared with conventional culture. The results obtained from the experiment are summarized as follows : 1. The effect of soil chemical properties after application organic farming materials, The amounts of pH and O.M. in N, P, K treated plot were few of change, To the contrary, fermentation compost and microorganisms fermentation compost treated plot were some increase, Amount of $P_2$$O_{5}$, Ca and K increase in comparison with the N, P, K treated plot. 2. Changes of soil microbial after application organic farming materials, The number of bacteria, actinomycetes and fungi in N, P, K treated plot were appeared definite direction. to the contrary, The number of bacteria and actimycetes in fermentation compost and microorganisms fermentation compost treated plot showed the increased tendency, The number of fungi showed the decreased tendency. 3. Effect of organic farming materials application on the growth and yield of tomato was superior in order of microorganisms fermentation compost plot〉 chemical fertilizers plot〉 fermentation compost plot. especially, chicken manure + microorganisms fermentation compost treated plot was the highest. 4. Effect of organic farming materials application on the components of tomato were not different.

  • PDF

Effect of Antibiotic Fermentation Residues on Rice and Tomato Growth (항생물질 발효 부산물이 수도 및 토마토 생육에 미치는 영향)

  • Lim, Soo-Kil;Yang, Han-Chul;Kim, Sung-Bok;Kwon, Hyok-Ji
    • Korean Journal of Environmental Agriculture
    • /
    • v.3 no.1
    • /
    • pp.52-56
    • /
    • 1984
  • In order to evaluate the applicability of two kinds of antibiotic fermentation residues on rice and tomato growth, yield, yield components, and some indicators for plant growing status were checked including analysis of physico-chemical properties of these two antibiotic fermentation residues. The results obtained are as follows: 1) These two antibiotic fermentation residues contain high organic matter ($21.6{\sim}24.2%$), phosphorus ($2900{\sim}4600 ppm$) and exchangeable cations ($55.4{\sim}138.3 meq/100 g$,), showing their pH values of $7.0{\sim}8.0$ range. 2) Both have developed net positive charge rather high and stiffly that exhibits high negative ion adsorption capacities, accordingly showing higher zero point of charges($pH 7.0{\sim}8.0$) than those of common soils. 3) The effect of the two kinds of antibiotic fermentation residues on rice growth was more or less the same comparable to the effect of the other fertilizers applied, showing the maximum yield at the application rate of 40 ㎏/10a. 4) The effect of these antibiotic fermentation residues on tomato growth was also similar to effects on rice plant showing the yield increment upon fertilizer application including two antibiotic fermentation residues but no significant differences among fertilizers. 5) According to the plant growing status, plant height, dry matter, number of effective tillers and grain number per panicle of rice and plant height and fresh weight of plant of tomato showed similar trend with yield of both plants.

  • PDF

Moisture Effect on Fermentation Characteristics of Cup-Plant Silage

  • Han, K.J.;Albrecht, K.A.;Muck, R.E.;Kim, D.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.636-640
    • /
    • 2000
  • Cup-plant (Silphium perfoliatum L.) has potential to produce high biomass and highly digestible forage in the wetlands where other productive forages do not grow or produce well. However, high moisture content at harvest is a considerable disadvantage of cup-plant for the production of high quality silage. This study was conducted to determine the effect of moisture content on the characteristics of cup-plant silage. Harvested cup-plant was ensiled in farm scale plastic bag silos and laboratory silos. In the plastic bag silos, first growth (FG) and regrowth (RG) cup-plant was harvested, wilted and ensiled. Dry matter content of FG and RG was 280 g/kg and 320 g/kg after 48 hr of wilting. The silage made with FG had pH 5.3 and 5.63 g/kg DM of acetate as a major volatile fatty acid. The composition of lactate, butyrate and acetate production was 1.0: 0.9: 2.3. The pH of silage made with RG was 4.5 and lactate was a major fermentation end product (16.8 g/kg DM). In the laboratory silos, wilted and unwilted first growth cup-plant material was ensiled to compare the early fermentation end products at days 2, 4, 11, and 40. Wilting increased dry matter content by 42% in the harvested material. Wilted silage showed about one unit lower pH until day 11. The contents of ammonia nitrogen and acetate were higher in un wilted silage, while that of lactate was higher in wilted silage (p<0.05). Butyrate and propionate were not detected in the wilted silage until day 40. We conclude from the results that moisture control is essential for the production of high quality cup-plant silage and high pH of cup-plant silage is due to low concentrations of fermentation end products.

Selection of plant oil as a supplemental energy source by monitoring rumen profiles and its dietary application in Thai crossbred beef cattle

  • Matsuba, Keiji;Padlom, Apirada;Khongpradit, Anchalee;Boonsaen, Phoompong;Thirawong, Prayad;Sawanon, Suriya;Suzuki, Yutaka;Koike, Satoshi;Kobayashi, Yasuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1511-1520
    • /
    • 2019
  • Objective: The present study was conducted to select a plant oil without inhibitory effects on rumen fermentation and microbes, and to determine the optimal supplementation level of the selected oil in a series of in vitro studies for dietary application. Then, the selected oil was evaluated in a feeding study using Thai crossbred beef cattle by monitoring growth, carcass, blood and rumen characteristics. Methods: Rumen fluid was incubated with substrates containing one of three different types of plant oil (coconut oil, palm oil, and soybean oil) widely available in Thailand. The effects of each oil on rumen fermentation and microbes were monitored and the oil without a negative influence on rumen parameters was selected. Then, the dose-response of rumen parameters to various levels of the selected palm oil was monitored to determine a suitable supplementation level. Finally, an 8-month feeding experiment with the diet supplemented with palm oil was carried out using 12 Thai crossbred beef cattle to monitor growth, carcass, rumen and blood profiles. Results: Batch culture studies revealed that coconut and soybean oils inhibited the most potent rumen cellulolytic bacterium Fibrobacter succinogenes, while palm oil had no such negative effect on this and on rumen fermentation products at 5% or higher supplementation level. Cattle fed the diet supplemented with 2.5% palm oil showed improved feed conversion ratio (FCR) without any adverse effects on rumen fermentation. Palm oil-supplemented diet increased blood cholesterol levels, suggesting a higher energy status of the experimental cattle. Conclusion: Palm oil had no negative effects on rumen fermentation and microbes when supplemented at levels up to 5% in vitro. Thai crossbred cattle fed the palm oil-supplemented diet showed improved FCR without apparent changes of rumen and carcass characteristics, but with elevated blood cholesterol levels. Therefore, palm oil can be used as a beneficial energy source.

Effects of Flavonoid-rich Plant Extracts on In vitro Ruminal Methanogenesis, Microbial Populations and Fermentation Characteristics

  • Kim, Eun T.;Guan, Le Luo;Lee, Shin J.;Lee, Sang M.;Lee, Sang S.;Lee, Il D.;Lee, Su K.;Lee, Sung S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.530-537
    • /
    • 2015
  • The objective of this study was to evaluate the in vitro effects of flavonoid-rich plant extracts (PE) on ruminal fermentation characteristics and methane emission by studying their effectiveness for methanogenesis in the rumen. A fistulated Holstein cow was used as a donor of rumen fluid. The PE (Punica granatum, Betula schmidtii, Ginkgo biloba, Camellia japonica, and Cudrania tricuspidata) known to have high concentrations of flavonoid were added to an in vitro fermentation incubated with rumen fluid. Total gas production and microbial growth with all PE was higher than that of the control at 24 h incubation, while the methane emission was significantly lower (p<0.05) than that of the control. The decrease in methane accumulation relative to the control was 47.6%, 39.6%, 46.7%, 47.9%, and 48.8% for Punica, Betula, Ginkgo, Camellia, and Cudrania treatments, respectively. Ciliate populations were reduced by more than 60% in flavonoid-rich PE treatments. The Fibrobacter succinogenes diversity in all added flavonoid-rich PE was shown to increase, while the Ruminoccocus albus and R. flavefaciens populations in all PE decreased as compared with the control. In particular, the F. succinogenes community with the addition of Birch extract increased to a greater extent than that of others. In conclusion, the results of this study showed that flavonoid-rich PE decreased ruminal methane emission without adversely affecting ruminal fermentation characteristics in vitro in 24 h incubation time, suggesting that the flavonoid-rich PE have potential possibility as bio-active regulator for ruminants.

Effects of Fermented Cottonseed and Soybean Meal with Phytase Supplementation on Gossypol Degradation, Phosphorus Availability, and Growth Performance of Olive Flounder (Paralichthys olivaceus)

  • Lim, Se-Jin;Kim, Sung-Sam;Pham, Minh-Anh;Song, Jin-Woo;Cha, Ji-Hoon;Kim, Jin-Dong;Kim, Jung-Un;Lee, Kyeong-Jun
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.284-293
    • /
    • 2010
  • To reduce anti-nutritional factors in plant protein sources for fish meal replacement in fish feeds, cottonseed and soybean meal (CS) were fermented with Aspergillus oryzae. A feeding trial was conducted to verify the effects of fermented CS (FCS) with phytase supplementation on gossypol detoxification, phosphorus digestibility, antioxidant activity, and growth performance of juvenile olive flounder over 10 weeks. Four diets were formulated to replace 0, 30, or 40% fish meal protein with CS or FCS (designated as CS0, CS30, FCS30P, and FCS40P). Phytase (1,000 FTU/kg) was added to FCS30P and FCS40P. The microbial fermentation significantly increased dietary total polyphenols and consequently led to higher DPPH radical-scavenging activities in fish feed and fish tissue. Dietary and liver gossypol concentrations were dramatically decreased by the fermentation process. Phosphorus digestibility was significantly increased in fish fed the FCS40P diet. However, growth performance decreased in fish fed FCS diets. This study demonstrates that the fermentation process and phytase supplementation can improve the phosphorus availability of plant protein sources in fish. The fermentation of CS by A. oryzae could increase antioxidant activities in feed and fish and effectively degrade toxic gossypol in cottonseed meal.

Study on Gloeostereum Inoarnatum 5. Itoetimai - Fermentation Cultivation(Liquid Fermentation)

  • Jie, Tai-Long
    • Plant Resources
    • /
    • v.4 no.3
    • /
    • pp.200-205
    • /
    • 2001
  • It was reported in our Previous paper that the fermented products from Gloeostereum incarnatum strongly inhibit the growth of six kinds of bacteria in human bodies. In this paper the appropriated conditions of immersing culture for the strain 8 903 of Gloeostereum incarnatum was analysed. And the output of the hypha and fermentative product was determined or compared. The prelimenaryresults showed that the appropriated conditions for the growth of Gloeostereum incarnatum are: (1)culture medium:glucose 3%; protein peoptne 0.2%; soybeancake power 1% yeast power 0.3%; KH2PO40.05%; MgSO4 0.03%; CaCO3 0.01%; vitamin Bl 0.001%; befor sterilization pH Value of six should be maintained; (2) temperature; 27f ~28f ; (3) time; about 200 hours; (4) ventilation; (30%∼50%)/min. The sigh of the end culture are: pH coming down about 4: remnant glucoses less 1%; amino nitrogens about 20%; time about eight days. In the aforementioned conditions, the output of fermentative product achieve to 2.5∼3g/L.

  • PDF

STUDY ON GLOEOSTEREUM INOARNATUM S. ITOET IMAI-FERMENTATION CULTIVATION(LIQUID FERMENTATION)

  • Jie, Tai-Long
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.74-82
    • /
    • 2001
  • It was reported in our Previous paper that the fermented products from Gloeostereum incarnatum strongly inhibit the growth of six kinds of bacteria in human bodies. In this paper the appropriated conditions of immersing culture for the strain 8 903 of Gloeostereum incarnatum was analysed. And the output of the hypha and fermentative product was determined or compared, The prelimenaryresults showed that the appropriated conditions for the growth of Gloeostereum incarnatum are: (1)culture medium:glucose 3%; protein peoptne 0.2%; soybeancake power 1%, yeast power 0.3%; KH2PO40.05%; MgSO4 0.03%; CaCO3 0.01%; vitamin Bl 0.001%; befor sterilization pH Value of six should be maintained; (2) temperature; 27$^{\circ}C$~28$^{\circ}C$; (3) time; about 200 hours; (4) ventilation; (30%~50%)/min. The sigh of the end culture we: pH coming down about 4: remnant glucoses less 1%, amino nitrogens about 20;, time about eight days. In the aforementioned conditions, the output of fermentative product achieve to 2.5 ~3g/L.

  • PDF