• Title/Summary/Keyword: plant defense

Search Result 532, Processing Time 0.027 seconds

Generation of security system defense strategies based on evolutionary game theory

  • Bowen Zou;Yongdong Wang;Chunqiang Liu;Mingguang Dai;Qianwen Du;Xiang Zhu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3463-3471
    • /
    • 2024
  • The physical protection systems of Nuclear Power Plant are utilized to safeguard targets against intrude by attacker. As the methods employed by attackers to intrude Nuclear Power Plant become increasingly complex and diverse, there is an urgent need to identify optimal defense strategies to interrupt adversary intrusions. This paper focuses on studying the defense of security personnel against adversary intrusions and utilizes an evolutionary game approach to select the optimal defense decisions for physical protection systems. Under the assumption of bounded rationality for both the attacker and defender, the paper constructs replication dynamic equations for attack and defense strategies, investigating the process of strategy selection and the stability of evolution. Finally, a minimal model is proposed to validate the feasibility of utilizing the evolutionary game model for defense strategy selection.

PLANT CELL WALL WITH FUNGAL SIGNALS MAY DETERMINE HOST-PARASITE SPECIFICITY

  • Shiraishi, T.;Kiba, A.;Inata, A.;Sugimoto, M.;Toyoda, K.;Ichinose, Y.;Yamada, T.
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1998.07a
    • /
    • pp.10-18
    • /
    • 1998
  • For improvement of plants in disease resistance, it is most important to elucidate the mechanism to perceive and respond to the signal molecules of invaders. A model system with pea and its pathogen, Mycosphaerella pinodes, showed that the fungal elicitor induced defense responses in all plant species tested but that the suppressor of the fungus blocked or delayed the expression of defense responses and induced accessibility only in the host plant. In the world, many researchers believe that the pathogens` signals are recognized only on the receptors in the plasma membranes. Though we found that the ATPase and polyphosphoinositide metabolism in isolated plasma membranes responded to these fungal signals, we failed to detect specific actions of the suppressor in vitro on these plasma membrane functions. Recently, we found that ATPase (NTPases) and superoxide generating system in isolated cell wall were regulated by these fungal signals even in vitro, especially, by the suppressor in a strictly species-specific manner and also that the cell wall alone prepared an original defense system. The effects of both fungal signals on the isolated cell wall functions in vitro coincide perfectly with those on defense responses in vivo. In this treatise, we discuss the key role of the cell wall, which is plant-specific and the most exterior organelle, in determining host-parasite specificity and molecular target for improvement of plants.

  • PDF

Functions of MAPK Cascade Pathways in Plant Defense Signaling

  • Cheong, Yong-Hwa;Kim, Min-Chul
    • The Plant Pathology Journal
    • /
    • v.26 no.2
    • /
    • pp.101-109
    • /
    • 2010
  • Protein phosphorylation is one of the major mechanisms for controlling many cellular processes in all living organisms. Mitogen-activated protein kinase (MAPK) cascades are known to transducer extracellular stimuli to several cellular processes, including cell division, differentiation as well as responses to various stresses. In plants, several studies have revealed that MAPK cascade pathways play an important role in responses against biotic and abiotic stresses, including wounding, pathogen infection, temperature, drought, salinity and plant hormones. It is also known that MAPK cascades-mediated signaling is an essential process in the resistance step to pathogens by regulating the activity of transcription factors. Here, the insights into the functions of MAPK cascade pathways in plant defense response signaling from Arabidopsis, tobacco and rice are described.

Nitric Oxide-Induced Downregulation of a NAD(P)-Binding Rossmann-Fold Superfamily Gene Negatively Impacts Growth and Defense in Arabidopsis thaliana

  • Tiba Nazar Ibrahim Al Azawi;Murtaza Khan;Bong-Gyu Mun;Song-Uk Lee;Da-sol Lee;Waqas Rahim;Anjali Pande;Nusrat Jahan Methela;Cho-Jun Ho;Byung-Wook Yun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.143-143
    • /
    • 2022
  • Plant defense systems against pathogens have been studied extensively and are currently a hot topic in plant science. Using a reverse genetics technique, this study looked into the involvement of the NO-downregulated NAD(P)-binding Rossmann-fold superfamily gene in plant growth and defense in Arabidopsis thaliana. For this purpose, the knockout and overexpressing plant of the candidate gene along with the relevant controls were exposed to control, oxidative and nitro-oxidative stresses. The results showed that candidate gene negatively regulates plants' root and shoot lengths. To investigate the role of the candidate gene in plant basal defense, R-gene-mediated resistance and systemic acquired resistance (SAR) plants were challenged with virulent or avirulent strains of Pseudomonas syringae pathovar tomato (Psf) DC3000. The results showed that the candidate gene negatively regulates plants' basal defense, R-gene-mediated resistance and SAR. Further characterization via GO analysis associated the candidate gene with metabolic and cellular processes and response to light stimulus, nucleotide binding and cellular location in the cytosol and nucleus. Protein structure analysis indicated the presence of a canonical Oxidoreductase family NAD (P)-binding Rossmann fold domain of 120 amino acids with a total of 121 plant homologs across 35 different plant species in the clad streptophyta. Arabidopsis eFP browser showed its expression in almost all the above-ground parts. Protein analysis indicated C225 and C359 as potential targets for S-Nitrosylation by NO. SMART analysis indicated possible interactions with mevalonate/galactokinase, galacturonic acid kinase, arabinose kinase, putative xylulose kinase, GroES-like zinc-binding alcohol dehydrogenase and various glyceraldehyde-3-phosphate dehydrogenases.

  • PDF

Overcoming Encouragement of Dragon Fruit Plant (Hylocereus undatus) against Stem Brown Spot Disease Caused by Neoscytalidium dimidiatum Using Bacillus subtilis Combined with Sodium Bicarbonate

  • Ratanaprom, Sanan;Nakkanong, Korakot;Nualsri, Charassri;Jiwanit, Palakrit;Rongsawat, Thanyakorn;Woraathakorn, Natthakorn
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.205-214
    • /
    • 2021
  • The use of the supernatant from a Bacillus subtilis culture mixed with sodium bicarbonate was explored as a means of controlling stem brown spot disease in dragon fruit plants. In in vitro experiments, the B. subtilis supernatant used with sodium bicarbonate showed a strong inhibition effect on the growth of the fungus, Neoscytalidium dimidiatum, the agent causing stem brown spot disease and was notably effective in preventing fungal invasion of dragon fruit plant. This combination not only directly suppressed the growth of N. dimidiatum, but also indirectly affected the development of the disease by eliciting the dragon-fruit plant's defense response. Substantial levels of the pathogenesis-related proteins, chitinase and glucanase, and the phenylpropanoid biosynthetic pathway enzymes, peroxidase and phenyl alanine ammonia-lyase, were triggered. Significant lignin deposition was also detected in treated cladodes of injured dragon fruit plants in in vivo experiments. In summary, B. subtilis supernatant combined with sodium bicarbonate protected dragon fruit plant loss through stem brown spot disease during plant development in the field through pathogenic fungal inhibition and the induction of defense response mechanisms.

The Crucial Role of Chloroplast-Related Proteins in Viral Genome Replication and Host Defense against Positive-Sense Single-Stranded RNA Viruses

  • John, Bwalya;Kook-Hyung, Kim
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.28-38
    • /
    • 2023
  • Plant viruses are responsible for worldwide production losses of numerous economically important crops. The most common plant RNA viruses are positivesense single-stranded RNA viruses [(+)ss RNA viruses]. These viruses have small genomes that encode a limited number of proteins. The viruses depend on their host's machinery for the replication of their RNA genome, assembly, movement, and attraction to the vectors for dispersal. Recently researchers have reported that chloroplast proteins are crucial for replicating (+)ss plant RNA viruses. Some chloroplast proteins, including translation initiation factor [eIF(iso)4E] and 75 DEAD-box RNA helicase RH8, help viruses fulfill their infection cycle in plants. In contrast, other chloroplast proteins such as PAP2.1, PSaC, and ATPsyn-α play active roles in plant defense against viruses. This is also consistent with the idea that reactive oxygen species, salicylic acid, jasmonic acid, and abscisic acid are produced in chloroplast. However, knowledge of molecular mechanisms and functions underlying these chloroplast host factors during the virus infection is still scarce and remains largely unknown. Our review briefly summarizes the latest knowledge regarding the possible role of chloroplast in plant virus replication, emphasizing chloroplast-related proteins. We have highlighted current advances regarding chloroplast-related proteins' role in replicating plant (+)ss RNA viruses.

The Ralstonia pseudosolanacearum Type III Effector RipL Delays Flowering and Promotes Susceptibility to Pseudomonas syringae in Arabidopsis thaliana

  • Wanhui Kim;Hyelim Jeon;Hyeonjung Lee;Kee Hoon Sohn;Cecile Segonzac
    • Molecules and Cells
    • /
    • v.46 no.11
    • /
    • pp.710-724
    • /
    • 2023
  • The plant defense responses to microbial infection are tightly regulated and integrated with the developmental program for optimal resources allocation. Notably, the defense-associated hormone salicylic acid (SA) acts as a promoter of flowering while several plant pathogens actively target the flowering signaling pathway to promote their virulence or dissemination. Ralstonia pseudosolanacearum inject tens of effectors in the host cells that collectively promote bacterial proliferation in plant tissues. Here, we characterized the function of the broadly conserved R. pseudosolanacearum effector RipL, through heterologous expression in Arabidopsis thaliana. RipL-expressing transgenic lines presented a delayed flowering, which correlated with a low expression of flowering regulator genes. Delayed flowering was also observed in Nicotiana benthamiana plants transiently expressing RipL. In parallel, RipL promoted plant susceptibility to virulent strains of Pseudomonas syringae in the effector-expressing lines or when delivered by the type III secretion system. Unexpectedly, SA accumulation and SA-dependent immune signaling were not significantly affected by RipL expression. Rather, the RNA-seq analysis of infected RipL-expressing lines revealed that the overall amplitude of the transcriptional response was dampened, suggesting that RipL could promote plant susceptibility in an SA-independent manner. Further elucidation of the molecular mechanisms underpinning RipL effect on flowering and immunity may reveal novel effector functions in host cells.

Ultrastructures of Colletotrichum orbiculare in Cucumber Leaves Expressing Systemic Acquired Resistance Mediated by Chlorella fusca

  • Kim, Su Jeung;Ko, Eun Ju;Hong, Jeum Kyu;Jeun, Yong Chull
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.113-120
    • /
    • 2018
  • Chlorella, one single-cell green algae organism that lives autotrophically by photosynthesis, can directly suppress some plant diseases. The objective of this study was to determine whether pre-spraying with Chlorella fusca suspension could induce systemic acquired resistance (SAR) in cucumber plants against anthracnose caused by Colletotrichum orbiculare. In order to illustrate SAR induced by algae, infection structures in host cells were observed under a transmission electron microscope (TEM). Cytological changes as defense responses of host mesophyll cells such as accumulation of vesicles, formation of sheath around penetration hyphae, and thickness of cell wells adjoining with intracellular hyphae were demonstrated in cucumber leaves. Similar defense responses were also found in the plant pre-treated with DL-3-aminobutyric acid, another SAR priming agent. Images showed that defense response of host cells was scarcely observed in untreated leaf tissues. These cytological observations suggest that C. fusca could induce SAR against anthracnose in cucumber plants by activating defense responses of host cells.

A Rice Gene Homologous to Arabidopsis AGD2-LIKE DEFENSE1 Participates in Disease Resistance Response against Infection with Magnaporthe oryzae

  • Jung, Ga Young;Park, Ju Yeon;Choi, Hyo Ju;Yoo, Sung-Je;Park, Jung-Kwon;Jung, Ho Won
    • The Plant Pathology Journal
    • /
    • v.32 no.4
    • /
    • pp.357-362
    • /
    • 2016
  • ALD1 (ABERRANT GROWTH AND DEATH2 [AGD2]-LIKE DEFENSE1) is one of the key defense regulators in Arabidopsis thaliana and Nicotiana benthamiana. In these model plants, ALD1 is responsible for triggering basal defense response and systemic resistance against bacterial infection. As well ALD1 is involved in the production of pipecolic acid and an unidentified compound(s) for systemic resistance and priming syndrome, respectively. These previous studies proposed that ALD1 is a potential candidate for developing genetically modified (GM) plants that may be resistant to pathogen infection. Here we introduce a role of ALD1-LIKE gene of Oryza sativa, named as OsALD1, during plant immunity. OsALD1 mRNA was strongly transcribed in the infected leaves of rice plants by Magnaporthe oryzae, the rice blast fungus. OsALD1 proteins predominantly localized at the chloroplast in the plant cells. GM rice plants over-expressing OsALD1 were resistant to the fungal infection. The stable expression of OsALD1 also triggered strong mRNA expression of PATHOGENESIS-RELATED PROTEIN1 genes in the leaves of rice plants during infection. Taken together, we conclude that OsALD1 plays a role in disease resistance response of rice against the infection with rice blast fungus.