• Title/Summary/Keyword: plant canopy

Search Result 296, Processing Time 0.028 seconds

Analysis of Plants Shape by Image Processing (영상처리에 의한 식물체의 형상분석)

  • 이종환;노상하;류관희
    • Journal of Biosystems Engineering
    • /
    • v.21 no.3
    • /
    • pp.315-324
    • /
    • 1996
  • This study was one of a series of studies on application of machine vision and image processing to extract the geometrical features of plants and to analyze plant growth. Several algorithms were developed to measure morphological properties of plants and describing the growth development of in-situ lettuce(Lactuca sativa L.). Canopy, centroid, leaf density and fractal dimension of plant were measured from a top viewed binary image. It was capable of identifying plants by a thinning top viewed image. Overlapping the thinning side viewed image with a side viewed binary image of plant was very effective to auto-detect meaningful nodes associated with canopy components such as stem, branch, petiole and leaf. And, plant height, stem diameter, number and angle of branches, and internode length and so on were analyzed by using meaningful nodes extracted from overlapped side viewed images. Canopy, leaf density and fractal dimension showed high relation with fresh weight or growth pattern of in-situ lettuces. It was concluded that machine vision system and image processing techniques are very useful in extracting geometrical features and monitoring plant growth, although interactive methods, for some applications, were required.

  • PDF

Effects of vegetation structure and human impact on understory honey plant richness: implications for pollinator visitation

  • Cho, Yoori;Lee, Dowon;Bae, SoYeon
    • Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Background: Though the biomass of floral vegetation in understory plant communities in a forested ecosystem only accounts for less than 1% of the total biomass of a forest, they contain most of the floral resources of a forest. The diversity of understory honey plants determines visitation rate of pollinators such as honey bee (Apis mellifera) as they provide rich food resources. Since the flower visitation and foraging activity of pollinators lead to the provision of pollination service, it also means the enhancement of plant-pollinator relationship. Therefore, an appropriate management scheme for understory vegetation is essential in order to conserve pollinator population that is decreasing due to habitat destruction and disease infection. This research examined the diversity of understory honey plant and studied how it is related to environmental variables such as (1) canopy density, (2) horizontal heterogeneity of canopy surface height, (3) slope gradient, and (4) distance from roads. Vegetation survey data of 39 plots of mixed forests in Chuncheon, Korea, were used, and possible management practices for understory vegetation were suggested. Results: This study found that 113 species among 141 species of honey plant of the forests were classified as understory vegetation. Also, the understory honey plant diversity is significantly positively correlated with distance from the nearest road and horizontal heterogeneity of canopy surface height and negatively correlated with canopy density. Conclusions: The diversity of understory honey plant vegetation is correlated to vegetation structure and human impact. In order to enhance the diversity of understory honey plant, management of density and height of canopy is necessary. This study suggests that improved diversity of canopy cover through thinning of overstory vegetation can increase the diversity of understory honey plant species.

Determining Canopy Growth Conditions of Paddy Rice via Ground-based Remote Sensing

  • Jo, Seunghyun;Yeom, Jongmin;Ko, Jonghan
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.1
    • /
    • pp.11-20
    • /
    • 2015
  • This study aimed to investigate the canopy growth conditions and the accuracy of phenological stages of paddy rice using ground-based remote sensing data. Plant growth variables including Leaf Area Index (LAI) and canopy reflectance of paddy rice were measured at the experimental fields of Chonnam National University, Gwangju, Republic of Korea during the crop seasons of 2011, 2012, and 2013. LAI values were also determined based on correlations with Vegetation Indices (VIs) obtained from the canopy reflectance. Three phenological stages (tillering, booting, and grain filling) of paddy rice could be identified using VIs and a spatial index (NIR versus red). We found that exponential relationships could be applied between LAI and the VIs of interest. This information, as well as the relationships between LAI and VIs obtained in the present study, could be used to estimate and monitor the relative growth and development of rice canopies during the growing season.

Improvement of Canopy Light Distribution, Photosynthesis, and Growth of Lettuce (Lactuca Sativa L.) in Plant Factory Conditions by Using Filters to Diffuse Light from LEDs (LED 식물공장에서 산란 유리 이용에 의한 상추(Lactuca Sativa L.)의 군락 광분포, 광합성 및 생장 향상)

  • Kang, Woo Hyun;Zhang, Fan;Lee, June Woo;Son, Jung Eek
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.84-93
    • /
    • 2016
  • Plant factories with artificial lights require a large amount of electrical energy for lighting; therefore, enhancement of light use efficiency will decrease the cost of plant production. The objective of this study was to enhance the light use efficiency by using filters to diffuse the light from LED sources in plant factory conditions. The two treatments used diffuse glasses with haze factors of 40% and 80%, and a control without the filter. For each treatment, canopy light distribution was evaluated by a 3-D ray tracing method and canopy photosynthesis was measured with a sealed acrylic chamber. Sixteen lettuces for each treatment were cultivated hydroponically in a plant factory for 28 days after transplanting and their growth was compared. Simulation results showed that the light absorption was concentrated on the upper part of the lettuce canopy in treatments and control. The control showed particularly poor canopy light distribution with hotspots of light intensity; thus the light use efficiency decreased compared to the treatments. Total light absorption was the highest in the control; however, the amount of effective light absorption was higher in treatments than the control, and was highest in treatment using filters with a haze factor of 80%. Canopy photosynthesis and plant growth were significantly higher in all the treatments. In conclusion, application of the diffuse glass filters enhanced the canopy light distribution, photosynthesis, and growth of the plants under LED lighting, resulting in enhanced the light use efficiency in plant factory conditions.

Analysis of Productivity in Rice Plant - (III) Dynamic Change of Canopy Structure - (벼의 생산력 분석 - (III) 군락구조의 동적변화 -)

  • Park, Hoon;Park, Young-Sun
    • Applied Biological Chemistry
    • /
    • v.15 no.1
    • /
    • pp.41-47
    • /
    • 1972
  • Comparative study on dynamic change of canopy structure during ripening period were carried out by using newly bred high yield rice cultivar (IR 667-Suwon 213) and a commercial variety, Jinhung in relation to nitrogen nutrition. The results were as follows. 1. Canopy structure pattern (vertical distribution of dry matter density at heading)was vertical type for Jinhung and horizontal type for IR 667. 2. The vertical distribution pattern of leaf area density (or weight) in the canopy was central dominant type for IR 667 while apical dominant type for Jinhung. 3. Canopy conservation pattern and percent distribution pattern of leaf area density followed the vertical distribution pattern of leaf area density. 4. Canopy persistence was weaker in IR 667, thus they have smaller canopy conservation ratio indicating faster senescence. 5. Slow supply of nitrogen (sulfur coated urea) showed a trend to change the apical dominant pattern into the central dominant pattern by the conservation of central portion, and it-resulted in higher yield though nitrogen nutrition did little affect canopy pattern. 6. The central and apical dominant pattern appeared to be well matched to the upper leaf-dependent type and the lower leaf-dependent type of grain yield, respectively.

  • PDF

Forest regrowth reduces richness and abundance of invasive alien plant species in community managed Shorea robusta forests of central Nepal

  • Khaniya, Laxmi;Shrestha, Bharat Babu
    • Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.90-97
    • /
    • 2020
  • Background: Natural forests are generally considered to be less prone to biological invasions than other modified ecosystems, particularly when canopy cover is high. Few decades of management of degraded forests by local communities in Nepal has increased canopy cover and altered disturbance regimes. These changes might have reduced the abundance of invasive alien plant species (IAPS) in forests. To understand the status of IAPS in such forests, we studied two community managed Shorea robusta forests (Sundari and Dhusheri) of Nawalpur district in central Nepal. In these two forests, vegetation sampling was done using circular plots 10 m radius at forest edge, gaps, and within canopy. Variation of IAPS richness and cover across these microhabitats were compared, and their variation with tree canopy cover and basal area analyzed. Result: Altogether 14 IAPS were recorded in the study forests; among them Chromolaena odorata, Ageratum houstonianum, and Lantana camara had the highest frequency. Mikania micrantha was at the early stage of colonization in Sundari Community Forest (CF) but absent in Dhuseri CF. Both IAPS cover and richness was higher at forest edge and gap than in canopy plots and both these attributes declined with increasing canopy cover and tree basal area. Conclusion: The results indicate that increase in canopy cover and closure of forest gaps through participatory management of degraded forests can prevent plant invasions and suppress the growth of previously established IAPS in Shorea robusta forests of Nepal. This is the unacknowledged benefit of participatory forest management in Nepal.

Continuous monitoring of the canopy gas exchange of rice and soybean based on the aerodynamic analysis of the plant canopy

  • Tanaka, Yu;Katayama, Hiroto;Kondo, Rintaro;Homma, Koki;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.60-60
    • /
    • 2017
  • It is important to measure the gas exchange activity of the crops in canopy scale to understand the process of biomass production and yield formation. Thermal imaging of the canopy surface temperature is a powerful tool to detect the gas exchange activity of the crop canopy. The simultaneous measurement of the canopy temperature and the meteorological data enables us to calculate the canopy diffusive conductance ($g_c$) based on the heat flux model (Monteith et al. 1973, Horie et al. 2006). It is, however, difficult to realize the long-term and continuous monitoring of $g_c$ due to the occurrence of the calculation error caused by the fluctuation of the environmental condition. This is partly because the model assumption is too simple to describe the meteorological and aerodynamic conditions of the crop canopy in the field condition. Here we report the novel method of the direct measurement of the aerodynamic resistance ($r_a$) of the crop canopy, which enables us the stable and continuous measurement of the gas exchange capacity of the crop plants. The modified heat balance model shows the improved performance to quantify $g_c$ under the fluctuating meteorological condition in the field. The relationship between $g_c$ and biomass production of rice and soybean varieties is also discussed in the presentation.

  • PDF

Canopy Architecture and Radiation Profiles in Natural Typha $\times$ glauca Stand (부들(Typha$\times$glauca) 자연군락의 엽층부 구조와 수광상태)

  • Kim, Joon-Ho
    • Journal of Plant Biology
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 1985
  • To verify the cause of high productivity in Typha stand, leaf area index(LAI), leaf orientation and inclination, specific leaf area (SLA), and radiation interception profiles were determined in a natural Typha$\times$glauca stand. Throughout the growing season, the leaf inclination has been kept at near-right angle and leaf orientation has been random. These chracteristics were responsible for an uniform spatial arrangement of the leaves within the canopy and could be explained by the SLA value, which increased in their higher strata. The extinction coefficient (K) of the canopy, 0.12 to 0.20, was one of the smallest value out of terrestrial plant communities. At least more than 25% of full radiation penetrated into the lowest stratum of the canopy. High productivity of the Typha would be attributed to efficient penetration of the radiation in virtue of the stiff and straight leaves even though rather small LAI.

  • PDF

Analysis of Productivity in Rice Plant II Evaluation of Canopy Structure and Canopy Score (벼의 생산력(生産力) 분석(分析) II 생산구조(生産構造) 평가(評價)와 군낙평점(群落評點))

  • Park, Hoon;Kim, Yung Sup;Yoon, Jong Hyuk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.1
    • /
    • pp.9-15
    • /
    • 1972
  • Comparative analyses of canopy structure were conducted using newly bred high yield rice cultivars (IR 667-Suwon 213 and 214) and commercial varieties (Jinhung and Paldal) under the field condition. "Canopy score" as criteria of canopy structure was proposed. The results were summerized as follows: 1. IR667 line (IR8${\times}$Taichung Native 1${\times}$Yukara) showed lower canopy height, greater tiller openness, smaller leaf openness and leaf length ratio (flag leaf/3rd), shorter 4th and 5th internode length, greater diameter of 5th internode, consequently greater leaf area index, panicle weight and leaf weight ratio (leaf/leaf sheathculm) as merits, and greater leaf width, smaller leaf number(number of leaf/$m^2$)and specific leaf area($cm^2/g$) and faster destruction of canopy by senescence as demerits comparing with commercial varieties. 2. IR 667 line showed much higher "Canopy score", subsequently higher yield. 3. The quality of individual leaf was better in the commercial varieties indicating that the best combination for the better yield would be the leaf of commercial varieties with the structure of IR667 line.

  • PDF

Effect of Canopy Reforming on Light Penetration into Crop Community and Yielding in Corn (옥수수 초형교정이 군락 투광성 및 수량성에 미치는 영향)

  • 이호진;조명제;이홍석
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.1
    • /
    • pp.76-83
    • /
    • 1985
  • A hypothesis that artificial reforming of corn canopy could improve solar light penetration and dry matter production was tested in corn fields (var. Suwon 19) with three planting densities; low (60 ${\times}$ 40cm), medium (60 ${\times}$ 24cm) and high (60 ${\times}$ 16cm). Natural canopy was found that leaf orientations were even over all azimuth but somewhat inclined toward north-south direction and leaf angle ranged 38$^{\circ}$ to 71$^{\circ}$ from horizontal surface. Reforming corn canopy included following treatments: 1) natural canopy planted in north-south rows (natural canopy), 2)east-west plane canopy planted in north-south rows (E-W canopy), 3)east-west plane canopy and upright leaves in north-south rows, 4)north-south plane canopy (N-S canopy) in east-west rows. After corn plots were installed with training system by supporting poles and connecting wires, corn leaves were induced to a reforming direction and tied on wire. Average light intensity at the mid-point of plant height showed 5-10% increases in E-W canopy and in E-W canopy plus upright leaves, but a 2-10% decrease in N-S canopy from natural canopy. At yellow ripe stage, total dry wt. was increased in E-W canopy but not in N-S canopy. The E-W canopy produced 3-10% more grain yield than natural canopy. Though E-W canopy plus upright leaves yielded less at low density, it yielded up to 10% more at higher density. The N-S canopy yielded similar to low compared with natural canopy. These results suggests that reforming canopy toward solar incident direction increases light penetration into lower canopy, photosynthetic efficiency and grain yield, especially at high planting density in corn.

  • PDF