• Title/Summary/Keyword: planetary ball milling

Search Result 65, Processing Time 0.028 seconds

Characterization of LaCoO3 Perovskite Catalyst for Oxygen Reduction Reaction in Zn-air Rechargeable Batteries (아연-공기전지용 페롭스카이트 산화물 촉매의 산소환원반응 특성)

  • Sun, Ho-Jung;Cho, Myung-Yeon;An, Jung-Chul;Eom, Seungwook;Park, Gyungse;Shim, Joongpyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.436-442
    • /
    • 2014
  • $LaCoO_3$ powders synthesized by Pechini process were pulverized by planetary ball-milling to decrease particle size and characterized as a catalyst in alkaline solution for oxygen reduction and evolution reaction (ORR & OER). The changes of physical properties, such as particle size distribution, surface area and electric conductivity, were analyzed as a function of ball-milling time. Also, the variations of the crystal structure and surface morphology of ball-milled powders were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemically catalytic activities of the intrinsic $LaCoO_3$ powders decreased with increasing ball-milling time, but their electrochemical performance as an electrode improved by the increase of the surface area of the powder.

Mechanical alloy and Thermoelectric Properties of $\beta-FeSi_2$ by Planetary Ball Milling (기계적 합금법에 의한 $\beta-FeSi_2$분말 합성 및 열전특성)

  • Park Keunil;Cho Sung Il
    • Korean Journal of Crystallography
    • /
    • v.15 no.2
    • /
    • pp.104-109
    • /
    • 2004
  • The mechanical synthesis of thermoelectric material $FeSi_2$ by planetary ball mill has been investigated. The homogeneous and amorphous mixture of Fe-Si has been obtained by mechanical alloying for 850 rpm-40 min. The $\beta-FeSi_2$ powder could be synthesized by 1123 K-3 hr annealing heat treatment after mechanical alloying for 850 rpm-10, 20, and 40 min. The ceramic samples doped with the maximum content up to $10\;at.\;\%$ Co have exhibited semiconduction phenomena and maximum thermoelectric powder at 440K.

Grinding Effects of Coal-Fired Pond Ash on Compressive Strength of Geopolymers (화력발전소 매립 석탄재의 분쇄가 지오폴리머의 강도에 미치는 영향)

  • Lee, Sujeong;Kang, Nam-Hee;Chon, Chul-Min;Jou, Hyeong-Tae
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.3-11
    • /
    • 2014
  • Bottom ash from coal fired power plants is not widely used due to a broad range of particle sizes and a high carbon content for producing geopolymers. The effect of mechanical activation on compressive strength of bottom ash- based geopolymers was examined by rod and planetary-ball milling to encourage full-fledged recycling of bottom ash, the main component of pond ash. The amount of amorphous component in the milled ash samples did not change significantly after the mechanical activation. It is presumably because needle-shaped mullite crystals, which is a major crystalline phase and grown in a glassy matrix, possess high strength and toughness, and therefore, they could endure external shocks and remain almost intact. Milling operation, however, decreased the particle size and improved the homogeneity of ash, thereby leading to increase reactivity of milled ash with alkali activators. Rod milling produced a relatively narrow particle size distribution of the milled ash particles; however, it was less effective in reducing the particle size. Nevertheless, it was interesting to observe that rod milling had equal effect on improving the compressive strength of geopolymers up to about 37%, as that of planetary ball milling. Rod milling is believed to be suitable process for enhancing the reactivity of bottom ash for large-scale recycling of bottom ash and producing geopolymers.

Analysis on Milling Behavior of Oxide Dispersion Strengthened Ni-based Atomizing Powder with Ni5Y Intermetallic Phase (Ni5Y 합금상이 형성된 Ni계 산화물 분산강화 아토마이징 분말의 밀링 거동 분석)

  • Park, Chun Woong;Byun, Jong Min;Choi, Won June;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • Ni-based oxide dispersion strengthened (ODS) alloys have a higher usable temperature and better high-temperature mechanical properties than conventional superalloys. They are therefore being explored for applications in various fields such as those of aerospace and gas turbines. In general, ODS alloys are manufactured from alloy powders by mechanical alloying of element powders. However, our research team produces alloy powders in which the $Ni_5Y$ intermetallic phase is formed by an atomizing process. In this study, mechanical alloying was performed using a planetary mill to analyze the milling behavior of Ni-based oxide dispersions strengthened alloy powder in which the $Ni_5Y$ is the intermetallic phase. As the milling time increased, the $Ni_5Y$ intermetallic phase was refined. These results are confirmed by SEM and EPMA analysis on microstructure. In addition, it is confirmed that as the milling increased, the mechanical properties of Ni-based ODS alloy powder improve due to grain refinement by plastic deformation.

Mechanically Driven Decomposition of Intermetallics

  • Kwon, Young-Soon;Kim, Hyun-Sik;Gerasimov, Konstantin B.
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.422-432
    • /
    • 2002
  • Mechanically driven decomposition of intermetallics during mechanical milling(MM 1 was investigated. This process for Fe-Ce and Fe-Sn system was studied using conventional XRD, DSC, magnetization and alternative current susceptibility measurements. Mechanical alloying and milling form products of the following composition (in sequence of increasing Gecontent): $\alpha$(${\alpha}_1$) bcc solid solution, $\alpha$+$\beta$-phase ($Fe_{2-x}Ge$), $\beta$-phase, $\beta$+FeGe(B20), FeGE(B20), FeGe(B20)+$FeGe_2$,$FeGe_2$,$FeGe_2$+Ge, Ge. Incongruently melting intermetallics $Fe_6Ge_5$ and $Fe_2Ge_3$ decompose under milling. $Fe_6Ge_5$ produces mixture of $\hat{a}$-phase and FeGe(B20), $Fe_2Ge_3$ produces mixture of FeGe(B20) and $FeGe_2$ phases. These facts are in good agreement with the model that implies local melting as a mechanism of new phase for-mation during medchanical alloying. Stability of FeGe(B20) phase, which is also incongruently melting compound, is explained as a result of highest density of this phase in Fe-Ge system. Under mechanical milling (MM) in planetary ball mill, FeSn intermetallic decomposes with formation $Fe_5Sn_3$ and $FeSn_2$ phases, which have the biggest density among the phases of Fe-Sn system. If decomposition degree of FeSn is relatively small(<60%), milled powder shows superparamagnetic behavior at room temperature. For this case, magnetization curves can be fitted by superposition of two Langevin functions. particle sizes for ferromagnetic $Fe_5Sn_3$ phase determined from fitting parameters are in good agreement with crystalline sizes determined from XRD data and remiain approximately chageless during MM. The decomposition of FeSn is attributed to the effects of local temperature and local pressure produced by ball collisions.

Spark plasma sintering 소결법에 의해 제작 된 Ti-Al-Si 합금타겟의 물성과 합금타겟을 이용하여 제작한 박막에 관한 연구

  • Lee, Han-Chan;Jeong, Deok-Hyeong;Mun, Gyeong-Il;Lee, Bung-Ju;Sin, Baek-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.237.1-237.1
    • /
    • 2013
  • Ti 와 Al 은 금속간의 화합물이 내산화성에 우수한 성질을 가지고 있으며 낮은 밀도와 고온에도 큰 변화가 없는 성질을 가지고 있다. 그리하여 내식 및 부식 관련 연구나 고온재료를 필요로 하는 우주, 엔진 제품 등에 많은 연구가 진행되고 있다. 또한 Ti-Al-N 박막은 경도가 우수하여 고속 공구 부품에 널리 사용되고 있으며 최근 Ti-Al-N 에 Si 첨가로 인하여 40 GPa 이상의 고경도와 1,000도 이상의 산화온도를 지닌 나노 혼합물 코팅을 형성 시키는 것으로 알려져 있다. 본 연구에서는 Ti, Al, Si 원분말을 PBM (Planetary Ball Milling) 방법을 사용하여 Ti-Al-Si 혼합분말로 제조하고, 제조된 분말들은 SPS (Spark Plasma Sintering) 공정을 통하여 Ti-Al-Si 합금타겟을 제작하였다. 제작된 Ti-Al-Si 합급타겟을 사용한 Sputtering 공정을 수행하여 Ti-Al-Si 3원계 박막을 증착하였다. 그 결과 기존 Ti (82 ${\mu}m$), Al (32 ${\mu}m$), Si (16 ${\mu}m$) 크기의 원분말들이 PBM (Planetary Ball Milling) 공정 후 Ti-Al-Si (18 ${\mu}m$) 로 입도가 작아진 것을 확인 할 수 있었고, 소결 후 타겟이 99% 이상의 높은 밀도를 가졌으며 원분말의 조성과 동일한 조성을 가진 타겟이 제작되었음을 확인하였다. Ti-Al-Si 타겟의 경도는 약 1,000 Hv 이상의 값을 보였으며, Ti-Al-Si-N 박막의 경우 타겟의 조성과 동일하였고 경도는 약 35 GPa 로 높은 경도 값을 가지는 것을 확인하였다. 내산화 테스트 결과 Ti-Al-Si-N 박막은 1,000도 에서도 박막의 손상이 가지 않았다.

  • PDF

Thermoelectric Properties of Bi0.4Sb1.6Te3 Sintered Body Fabricated by Mechanical Grinding Process (기계적 밀링공정에 의해 제조된 Bi0.4Sb1.6Te3 소결체의 열전특성)

  • Lee, Gil-Geun;Shin, Sung-Chul;Kim, Woo-Yeol;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.313-320
    • /
    • 2006
  • The present study is to analyze the thermoelectric properties of $Bi_{0.4}Sb_{1.6}Te_3$ thermoelectric materials fabricated by the mechanical grinding process. The $Bi_{0.4}Sb_{1.6}Te_3$ powders were prepared by the combination of mechanical milling and reduction treating methods using simply crushed pre-alloyed $Bi_{0.4}Sb_{1.6}Te_3$ powder. The mechanical milling was carried out using the tumbler-ball mill and planetary ball mill. The tumbler-ball milling had an effect on the carrier mobility rather than the carrier concentration, whereas, the latter on the carrier concentration. The specific electric resistivity and Seebeck coefficient decreased with increasing the reduction-heat-treatment time. The thermal conductivity continuously increased with increasing the reduction-heat-treatment time. The figure of merit of the $Bi_{0.4}Sb_{1.6}Te_3$ sintered body prepared by the mechanical grinding process showed higher value than one of the sintered body of the simply crushed powder.

Fabrication of the Fine Magnetic Abrasives by using Mechanical Alloying Process and Its Polishing Characteristics (기계적 합금화 공정을 이용한 초미세 자성연마입자의 제조 및 특성 평가)

  • Park Sung-Jun;Lee Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.34-41
    • /
    • 2004
  • A new method to fabricate the fine magnetic abrasives by using mechanical alloying is proposed. The mechanical alloying process is a solid powder process where the powder particles are subjected to high energetic impact by the balls in a vial. As the powder particles in the vial are continuously impacted by the balls, cold welding between particles and fracturing of the particles take place repeatedly during the ball milling process using a planetary mill. After the manufacturing process, fine magnetic abrasives which the guest abrasive particles c lung to the base metal matrix without bonding material can be obtained. The shape of the newly fabricated fine magnetic abrasives was investigated using SEM and its polishing performance was verified by experiment. It is very helpful to finishing the injection mold steel in final polishing stage. The areal ms surface roughness of the workpiece after several polishing processes has decreased to a few nanometer scales.

Improvement of fatigue resistance of the miniature gear by controlling holding time of temperature in the hot powder extrusion process (분말 압출 공정에서 온도 유지시간 제어를 통한 미세기어의 내피로성 향상 연구)

  • Kim, J.W.;Lee, K.H.;Hwang, D.W.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.449-452
    • /
    • 2009
  • This paper was designed to fabricate the miniature spur gear with pitch circle of 1.8 by hot extrusion process of mechanically alloyed Zn-22wt%Al powder at various temperature. The mechanical alloying was preformed for ball milled times of 8h, 16h and 32h by the planetary ball milling. Mechanically alloyed powders were compacted cylindrical performs. Extrusions of the miniature spur gear using the alloyed powder were carried out at different extrusion temperatures. The extruded spur gear was sintered for 2h at $350^{\circ}C$ in argon atmosphere. The friction between the die and the powdered billet and the internally different density due to complex product shape cause the internal crack. To overcome the mentioned problems, high dimensional accuracy at cross section of the spur gear and uniform Vickers hardness could be obtained by graphite lubricant and controlling holding time.

  • PDF