• 제목/요약/키워드: plane-stress

검색결과 1,378건 처리시간 0.031초

이방성재료 접합 띠판에 대한 면외 동적계면균열 (Mode III Dynamic Interfacial Crack in Bonded Anisotropic Strip Under Anti-Plane Deformation)

  • 박재완;최성렬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.111-116
    • /
    • 2000
  • A semi-infinite interfacial crack propagated with constant velocity in two bonded anisotropic strip under out-of-plane clamped displacements is analyzed. The asymptotic stress and displacement fields near the crack tip are obtained, where the results get more general expressions applicable not only to isotropic/orthotropic materials but also to the extent of the anisotropic material having one plane of elastic symmetry for the interfacial crack. The dynamic stress intensity factor is obtained as a closed form, which is decreased as the velocity of crack propagation increases. The critical velocity where the stress intensity factor comes to zero is obtained, which agrees with the lower value between the critical values of parallel crack merged in the material 1 and 2 adjacent to the interface. The dynamic energy release rate is also obtained as a form related to the stress intensity factor.

  • PDF

CT 시편을 이용한 박판재료의 파괴인성 특성 (Fracture toughnesses of thin sheet materials by using CT specimens)

  • 이억섭;이윤표;강인모;김선용;김승권
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2090-2095
    • /
    • 1997
  • The plane stress fracture toughness for thin aluminum alloy(2024-T3 and 7075-T6) specimens are characterized by using compact-tension (CT) specimens. Anti-buckling plates were fabricated on both sides of the thin CT specimens to prevent the buckling phenomena which caused by the 45.deg. C plastic yielding at the crack tip under the plane stress condition. The plane stress fracture toughnesses determined by three different procedures are compared with each others. The plane stress fracture toughnesses are also compared with a few published values which were determined by using center-cracked panel specimens.

경사기능재료 사각 판의 열 탄성 변형과 응력 해석 (Thermoelastic deformation and stress analysis of a FGM rectangular Plate)

  • 김귀섭
    • 한국항공우주학회지
    • /
    • 제31권1호
    • /
    • pp.34-41
    • /
    • 2003
  • 경사기능재료 판에 대한 열탄성 변형과 응력 해석을 위해 Green 함수 방법이 채택되었다. 3차원 정상 온도분포에 대한 해는 적층판 이론에 의해 얻어진다. 열탄성 문제에 대한 기본 방정식은 각각 평면의(out-plane) 변형과 평면내(in-plane) 힘에 의해 유도되었다. 굽힙과 평면내 힘으로 인한 열탄성 변형과 응력분포는 Galerkin 방법에 근거한 Green 함수를 이용하여 해석되었다. 열탄성 변형과 응력분포 해석을 위한 Galerkin Green 함수의 특성함수들은 사각판의 제차 경계조건을 만족시키는 허용함수들의 급수 형태로 근사화 되었다. 수치예제가 수행되었으며, 경사기능재료의 물성치가 판의 열탄성 거동에 미치는 영향이 검토되었다.

두 이방성 띠판에 내재된 면외변형하의 등속평행 균열 (Parallel Crack with Constant Velocity in Two Bonded Anisotropic Strip Under Anti-Plane Deformation)

  • 박재완;김남훈;최성렬
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.496-505
    • /
    • 2000
  • A semi-infinite parallel crack propagated with constant velocity in two bonded anisotropic strip under anti-plane clamped displacement is analyzed. Using Fourier integral transform a Wiener-Hopf equation is derived. By solving this equation the asymptotic stress and displacement fields near the crack tip are determined, where the results give the more general expression applicable to the extent of the anisotropic material having one plane of elastic symmetry for the parallel crack. The dynamic stress intensity factor and energy release rate are also obtained as a closed form, which are the results applicable to the problem both of dynamic and static crack under the same geometry as this study. The stress intensity factor approaches zero at the critical crack velocity which is less than the shear wave velocity, but in typical case of isotropic or orthotropic material agrees with the velocity of shear wave. Also a circular shear stress around crack tip is considered, from which the stress is shown to be approximately symmetric about the horizontal axis. Referring to the maximum stress criteria, it could be shown that a brenched crack is formed by crack growth as crack velocity increases.

평면변형률 조건에서 다짐화강토의 변형과 강도특성 (Deformation and Strength Characteristics of Compacted Weathered Granite Soil under Pland Strain Condition)

  • 정진섭
    • 한국농공학회지
    • /
    • 제41권2호
    • /
    • pp.70-79
    • /
    • 1999
  • The lower ground of structure, in which the strip loads, such as earth dams and embankments , are signiificantly working on , is required to be interpreted as a state of plane strain where the strain of intermediated principal stress direction is put '0' . The plane strain state is frquently observed in actural soil engineering case. For those case, drained stress-strain and strength behavior of Iksan weathered granite soil prepared in cubical specimens with cross-anisotropic fabric was studied by conventional triaxial compression, plane strain and cubial triaxial tests with independent control of the three principal stress. All specimens were loaded under conditions of principl stress directions fixed and aligned with the directions of the material axes. As a result of research , when a ground condition is analyzed under plane strain state, the shear strength obtained from the conventional triaxial compression test can be understimated.

  • PDF

면내력을 받는 변단면 후판의 진동해석 (Vibration Analysis of Tapered Thick Plate Subjected to Static In-plane Stress)

  • 정진택;오숙경;이용수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.521-525
    • /
    • 2004
  • This paper has the object of investigating natural frequencies of tapered thick plate on pasternak foundation by means of finite element method and providing kinetic design data for mat of building structures. vibration analysis that tapered thick plate subjected to In-plane stress is presented in this paper Finite element analysis of rectangular plate is done by use of rectangular finite element with 8-nodes. In order to analysis tapered plate which is supported on pasternak foundation. The ratio of In-plane stress to critical load is varied with $0.2\sigma_{cr},\;0.4\sigma_{cr},\;0.6\sigma_{cr}$, and the Winkler parameter is 0, 10, 100, 1000 the shear foundation parameter 0, 10. The taper ratio is applied as 0.0, 0.2, 0.4, 0.6, 0.8 respectively. This paper is analyzed varying thickness by taper ratio with In-plane stress.

  • PDF

압축잔류응력장을 전파하는 피로균열의 개구거동의 유한요소법을 이용한 해석적 검토 (An Analysis of the Fatigue Crack Opening Behaviour in the Welding Residual Stress Field by the Finite Element Method)

  • 박응준;김응준;유승현
    • Journal of Welding and Joining
    • /
    • 제21권6호
    • /
    • pp.77-83
    • /
    • 2003
  • The finite element analysis was performed for the cracks existing in residual stress fields in order to investigate the effects of configuration of residual stress distribution to the fatigue crack opening behaviour. And the variation of stress distributions adjacent to the crack caused by uploading was examined. The finite element model with contact elements for the crack plane and plane stress elements for the base material and the analytical method based on the superposition principle to estimate crack opening behaviour and the stress distribution adjacent to the crack subjected to uploading were used. The results of the analysis showed that crack opening behaviors and variations of stress distribution caused by uploading were changed depending on the configuration of residual stress distribution. When the crack existed in the region of compressive residual stress and the configuration of compressive residual stress distribution were inclined, a partial crack opening just behind of a crack tip occurred during uploading. Based on the above results, it was clarified that the crack opening behaviour in the residual stress field could be predicted accurately by the finite element analysis using these analytical method and model.

필릿과 맞대기 용접부 간의 간격 및 구속도에 따른 잔류응력 재분포 특성에 관한 연구 (Effect of Distance and Restraint Degree between Fillet and Butt Weldment on Residual Stress Redistribution at each Weldment)

  • 진형국;이동주;신상범
    • Journal of Welding and Joining
    • /
    • 제28권3호
    • /
    • pp.59-64
    • /
    • 2010
  • The purpose of this study is to identify the principal factor controlling transverse residual stress at the weldment for joining unit hull blocks. In order to do it, the comprehensive FE analyses were carried out to evaluate the effect of distance between fillet and butt weldments, stiffener span and in-plane restraint degree on the amount and distribution of transverse residual stress in way of the weldments between unit hull blocks. In accordance with FEA results, principal factor controlling the amount of transverse residual stress at the weldments was identified as in-plane restraint degree of butt weldment for unit blocks. The effect of other variables on the transverse residual stress was very small relatively.

Undrained strength-deformation characteristics of Bangkok Clay under general stress condition

  • Yimsiri, Siam;Ratananikom, Wanwarang;Fukuda, Fumihiko;Likitlersuang, Suched
    • Geomechanics and Engineering
    • /
    • 제5권5호
    • /
    • pp.419-445
    • /
    • 2013
  • This paper presents an experimental study on the influence of principal stress direction and magnitude of intermediate principal stress on the undrained stress-strain-strength behaviors of Bangkok Clay. The results of torsional shear hollow cylinder and advanced triaxial tests with various principal stress directions and magnitudes of intermediate principal stress on undisturbed Bangkok Clay specimens are presented. The analysis of testing results include: (i) stress-strain and pore pressure behaviors, (ii) stiffness characteristics, and (iii) strength characteristics. The results assert clear evidences of anisotropic characteristics of Bangkok Clay at pre-failure and failure conditions. The magnitude of intermediate principal stress for plane-strain condition is also investigated. Both failure surface and plastic potential in deviatoric plane of Bangkok Clay are demonstrated to be isotropic and of circular shape which implies an associated flow rule. It is also observed that the shape of failure surface in deviatoric plane changes its size, while retaining its circular shape, with the change in direction of major principal stress. Concerning the behavior of Bangkok Clay found from this study, the discussions on the effects of employed constitutive modeling approach on the resulting numerical analysis are made.

압축하중시 RPI clasp의 3가지 다른 proximal plate 형태에 따른 지대치 주위조직의 광탄성 응력 분석 (Photoelastic Stress Analysis of the Abutment Surrounding Tissue According to Shape of the Proximal Plate of the RPI Clasp)

  • 최정수;김부섭
    • 대한치과기공학회지
    • /
    • 제34권4호
    • /
    • pp.473-482
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the stress distribution of the surrounding tissues according to 3 proximal plate types of the RPI clasp. Methods: The removeable partial denture which mandibular right and left second premolars and mandibular molars were lost was attached to a three dimensional photo elastic epoxy resin model. Then 120N of vertical load was applied. After 3-dimensional photoelastic stress analysis was used to record the isochromatic fringe patterns. Results: Kratochvil type guiding plane exhibited little uniform stress distribution on load center and alveolar ridge, but higher stress concentration on buccal surface of second premolar. Krol type guiding plane exhibited the stress concentration on the front of load center and relatively higher stress concentration on buccal surface of first premolar. However, this type had no effect on canine. Researcher type guiding plane showed the stress concentration on second premolar and molar, but the little stress distribution on first premolar. Conclusion: In all types, excessive stress concentration was appeared and three types were not significant different.