• Title/Summary/Keyword: plane recognition

Search Result 146, Processing Time 0.02 seconds

Supporting plane for intelligent robot system (지능 로보트 시스템에 있어서 지면의 이용에 관한 연구)

  • 박경택
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.990-995
    • /
    • 1991
  • The integration of intelligent robots into manufacturing systems should positively impact the product quality and productivity. A new theory of object location and recognition using the supporting plane is presented. The unknown supporting points are determined by image coordinates, known camera parameters, and joint coordinates of the robot manipulators. This is developed by using the geometrical interpretation of perspective projection and the geometrical constraints of industrial environments. This can be applied to solve typical robot vision problems such as determination of position, orientation, and recognition of objects.

  • PDF

3D Image Correlator using Computational Integral Imaging Reconstruction Based on Modified Convolution Property of Periodic Functions

  • Jang, Jae-Young;Shin, Donghak;Lee, Byung-Gook;Hong, Suk-Pyo;Kim, Eun-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.388-394
    • /
    • 2014
  • In this paper, we propose a three-dimensional (3D) image correlator by use of computational integral imaging reconstruction based on the modified convolution property of periodic functions (CPPF) for recognition of partially occluded objects. In the proposed correlator, elemental images of the reference and target objects are picked up by a lenslet array, and subsequently are transformed to a sub-image array which contains different perspectives according to the viewing direction. The modified version of the CPPF is applied to the sub-images. This enables us to produce the plane sub-image arrays without the magnification and superimposition processes used in the conventional methods. With the modified CPPF and the sub-image arrays, we reconstruct the reference and target plane sub-image arrays according to the reconstruction plane. 3D object recognition is performed through cross-correlations between the reference and the target plane sub-image arrays. To show the feasibility of the proposed method, some preliminary experiments on the target objects are carried out and the results are presented. Experimental results reveal that the use of plane sub-image arrays enables us to improve the correlation performance, compared to the conventional method using the computational integral imaging reconstruction algorithm.

A Numerical Speech Recognition by Parameters Estimated from the Data on the Estimated Plane and a Neural Network (추정평면에서 평가한 데이터와 인공신경망에 의한 숫자음 인식)

  • Choi, Il-Hong;Jang, Seung-Kwan;Cha, Tae-Hoo;Choi, Ung-Se;Kim, Chang-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.58-64
    • /
    • 1996
  • This paper was proposed the recognition method by using parameters which was estimated from the data on the estimated plane and a neural network. After the LPC estimated in each frame algorithm was mapped to the estimated plane by the optimum feature mapping function, we estimated the C-LPC and the maximum and minimum value and 3 divided power from the mapping data on the estimated plane. As a result of the experiment of the speech recognition that those parameters were applied to the input of a neural network, it was found that those parameters estimated from the estimated plane have the features of the original speech for a change in the time scale and that the recongnition rate by the proposed methods was 96.3 percent.

  • PDF

Automatic Disk Disease Recognition based on Feature Vector in T-L Spine Magnetic Resonance Image (척추 자기 공명 영상에서 특징 벡터에 기반 한 디스크 질환의 자동 인식)

  • 홍재성;이성기
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.233-242
    • /
    • 1998
  • In anatomical aspects, magnetic resonance image offers more accurate information than other medical images such as X ray ultrasonic and CT images. This paper introduces a method that recognizes disk diseases from spine MR images. In this method, image enhancement, image segmentation and feature extraction for sagittal plane and axial plane images are performed to separate the disk region. And then template matching method is used to extract disease region for axial plane imges. Finally, disease feature vectors are integrated and disease discrimination processes are performed. Experimental results show that the proposed method discriminates between normal and diseased disk with a considerable recognition ratio.

  • PDF

Recognition of Partial Discharge Patterns using Classifiers and the Neural Network (신경회로망과 Classifier를 이용한 부분방전패턴의 인식)

  • 이준호;이진우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.132-135
    • /
    • 1999
  • In this work, two approaches were proposed for the recognition of partial discharge patterns. The first approach was neural network with backpropagation algorithm, and the second approach was angle calculation between two operator vectors. PD signal were detected using three electrode systems; IEC(b), needle-plane and CIGRE method II electrode system. Both of neural network and angle comparison method showed good recognition performance for the patte군 similar to the trained patterns. And the number of operators to be used had a great influence on the recognition performance to the untrained patterns.

  • PDF

New Template Based Face Recognition Using Log-polar Mapping and Affine Transformation (로그폴라 사상과 어파인 변환을 이용한 새로운 템플릿 기반 얼굴 인식)

  • Kim, Mun-Gab;Choi, Il;Chien, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.1-10
    • /
    • 2002
  • This paper presents the new template based human face recognition methods to improve the recognition performance against scale and in-plane rotation variations of face images. To enhance the recognition performance, the templates are generated by linear or nonlinear operation on multiple images including different scales and rotations of faces. As the invariant features to allow for scale and rotation variations of face images, we adopt the affine transformation, the log-polar mapping, and the log-polar image based FFT. The proposed recognition methods are evaluated in terms of the recognition rate and the processing time. Experimental results show that the proposed template based methods lead to higher recognition rate than the single image based one. The affine transformation based face recognition method shows marginally higher recognition rate than those of the log-polar mapping based method and the log-polar image based FFT, while, in the aspect of processing time, the log-polar mapping based method is the fastest one.

Three-dimensional Distortion-tolerant Object Recognition using Computational Integral Imaging and Statistical Pattern Analysis (집적 영상의 복원과 통계적 패턴분석을 이용한 왜곡에 강인한 3차원 물체 인식)

  • Yeom, Seok-Won;Lee, Dong-Su;Son, Jung-Young;Kim, Shin-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1111-1116
    • /
    • 2009
  • In this paper, we discuss distortion-tolerant pattern recognition using computational integral imaging reconstruction. Three-dimensional object information is captured by the integral imaging pick-up process. The captured information is numerically reconstructed at arbitrary depth-levels by averaging the corresponding pixels. We apply Fisher linear discriminant analysis combined with principal component analysis to computationally reconstructed images for the distortion-tolerant recognition. Fisher linear discriminant analysis maximizes the discrimination capability between classes and principal component analysis reduces the dimensionality with the minimum mean squared errors between the original and the restored images. The presented methods provide the promising results for the classification of out-of-plane rotated objects.

Pattern Recognition of modal Sensitivity for Structural Damage Identification of Truss Structure (트러스의 구조손상추정을 위한 진동모드민감도의 패턴인식)

  • 류연선
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.80-87
    • /
    • 2000
  • Despite many combined research efforts outstanding needs exist to develop robust safety-estimation methods for large complex structures. This paper presents a practical damage identification scheme which can be applied to truss structures using only limited modal responses. firstly a theory of pattern recognition (PR) is described. Secondly existing damage-detection algorithms are outlined and a newly-derived algorithms for truss structures. Finally the feasibility of the proposed scheme is evaluated using numerical examples of plane truss structures.

  • PDF

Recognition of 3D Environment for Intelligent Robots (지능로봇을 위한 3차원 환경인식)

  • Jang, Dae-Sik
    • Journal of Internet Computing and Services
    • /
    • v.7 no.5
    • /
    • pp.135-145
    • /
    • 2006
  • This paper presents a novel approach to real-time recognition of 3D environment and objects for intelligent robots. First. we establish the three fundamental principles that humans use for recognizing and interacting with the environment. These principles have led to the development of an integrated approach to real-time 3D recognition and modeling, as follows: 1) It starts with a rapid but approximate characterization of the geometric configuration of workspace by identifying global plane features. 2) It quickly recognizes known objects in environment and replaces them by their models in database based on 3D registration. 3) It models the geometric details on the fly adaptively to the need of the given task based on a multi-resolution octree representation. SIFT features with their 3D position data, referred to here as stereo-sis SIFT, are used extensively, together with point clouds, for fast extraction of global plane features, for fast recognition of objects, for fast registration of scenes, as well as for overcoming incomplete and noisy nature of point clouds. The experimental results show the feasibility of real-time and behavior-oriented 3D modeling of workspace for robotic manipulative tasks.

  • PDF

Synthesis of Multiplexed MACE Filter for Optical Korean Character Recognition (인쇄체 한글의 광학적 인식을 위한 다중 MACE 필터의 합성)

  • 김정우;김철수;배장근;도양회;김수중
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2364-2375
    • /
    • 1994
  • For the efficient recognition of printed Korean characters, a multiplexed minimum average correlation energy(MMACE) filter is proposed. Proposed method solved the disadvantages of the tree structure algorithm which recognition system is very huge and recognition method is sophisticated. Using only one consonant MMACE filter and one vowel one, we recognized the full Korean character. Each MMACE filter is multiplexed by 4 K-tuple MACE filters which are synthesized by 24 consonants and vowels. Hence the proposed MMACE filter and the correlation distribution plane are divided by 4 subregion. We obtained the binary codes for the Korean character recognition from each correlation distribution subplane. And the obtained codes are compared with the truth table for consonants and vowels in computer. We can recognize the full Korean characters when substitute the corresponded consonant or vowel font of the consistent code to the correlation peak place in the output correlation plane. The computer simulation and optical experiment results show that the proposed compact Korean character recognition system using the MMACE filters has high discrimination capability.

  • PDF