• Title/Summary/Keyword: plane field

Search Result 1,498, Processing Time 0.033 seconds

The Spark Voltage Characteristics of Needle Gaps (침단간극의 불꽃 전압특성)

  • 정성계
    • 전기의세계
    • /
    • v.26 no.3
    • /
    • pp.69-72
    • /
    • 1977
  • The effects of sharpness of needle electode on the spark voltage in needle-plane and needle-needle spark gaps at atmospheric pressure was investigated experimentaly in this paper. As the sharpness of needle electrode increases, the spark voltage increases, and the rate of increase is greater in needle-needle electrode than in needle-plane gap. the effects of sharpness is greater in small gap length. These characteristics can be explained by the electric field strength at the needle tip depending on the sharpness of needle, electro-static capacity between the electrodes, and the polarity effect in needle-plane gap. These experimental results will be able to play an important roles on the design of needle-needle gap as high voltage measurement devices and of needle-plane gap as high voltage rectifier equipments.

  • PDF

Center-of-Gravity Effect on Supersonic Separation from the Mother Plane (무게중심 변화에 따른 초음속 공중발사 로켓의 모선분리 연구)

  • Ji, Young-Moo;Lee, Jae-Woo;Byun, Yung-Hwan;Park, Jung-Sang
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.423-426
    • /
    • 2006
  • An analysis is made of flow and rocket motion during a supersonic separation stage of air-launching rocket(ALR) from the mother plane. Three-dimensional compressible Navier-Stokes equations is numerically solved to analyze the steady/unsteady flow field around the rocket which is being separated from the mother plane configuration(F-4E Phantom). The simulation results clearly demonstrate the effect of shock-expansion wave interaction between the rocket and the mother plane. To predict the behavior of the ALR according to the change of the C.G., three cases of numerical analysis are performed. As a result, a design-guideline of supersonic air-launching rocket for the safe separation is proposed.

  • PDF

Numerical Analysis on Radiative Heating of a Plume Base in Liquid Rocket Engine (플룸에 의한 액체로켓 저부면 복사 가열 해석)

  • Sohn C. H.;Kim Y. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.65-70
    • /
    • 1999
  • Radiative heating of a liquid rocket base plane due to plume emission is numerically investigated. Calculation of flow and temperature fields around rocket nozzle precedes and thereby realistic plume shape and temperature distribution inside the plume are obtained. Based on the calculated temperature field, radiative transfer equation is solved by discrete ordinate method. The averaged radiative heat flux reaching the base plane is about $5kW/m^2$ at the flight altitude of 10.9km. This value is small compared with radiative heat flux caused by constant-temperature (1500K) plume emission, but it is not negligibly small. At higher altitude (29.8km), view factor between the babe plane and the exhaust plume is increased due to the increased expansion angle of the plume. Nevertheless, the radiative heating disappears since the base plane is heated to high temperature (above 1000K) due to convective heat transfer.

  • PDF

Microphone Array Design for Noise Source Imaging (소음원 영상화를 위한 마이크로폰 배열 설계)

  • ;Glegg, Stewart A.L.
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.255-260
    • /
    • 1997
  • This paper describes 3-dimensional volume array of 4 microphones including a reference microphone which is capable of imaging wideband noise source position in 2-dimensional image plane. The cross correlation function and corresponding imaging function between a reference microphone and other microphone, are derived as a function of noise source position. The magnitude of the imaging function gives noise source mapping in image plane. Since the image plane is selective from a rectangular and a cylindrical plane, noise source position information such as range and bearing relative to the array is identified very much easily. Simulation results for typical source configurations confirms the applicability of the proposed array in noise control field.

  • PDF

Wave Transmission Analysis of Semi-infinite Mindlin Plates Coupled at an Arbitrary Angle (임의의 각으로 연성된 반무한 Mindlin 판의 파동전달해석)

  • Park, Young-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.999-1006
    • /
    • 2014
  • Mindlin plate theory includes the shear deformation and rotatory inertia effects which cannot be negligible as exciting frequency increases. The statistical methods such as energy flow analysis(EFA) and statistical energy analysis(SEA) are very useful for estimation of structure-borne sound of various built-up structures. For the reliable vibrational analysis of built-up structures at high frequencies, the energy transfer relationship between out-of-plane waves and in-plane waves exist in Mindlin plates coupled at arbitrary angles must be derived. In this paper, the new wave transmission analysis is successfully performed for various energy analyses of Mindlin plates coupled at arbitrary angles.

Microstrip 3-dB Tapered Array Antenna with Wide Detection Range at 35 GHz (광영역 탐지용 35GHz 마이크로스토립 3-dB 테이퍼 배열 안테나)

  • 이영주;정명숙;박위상;최재현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.984-989
    • /
    • 2000
  • A microstrip patch array designed at 35 GHz is described for use in the detection of the position of moving targets. To obtain wide detection range, the array is arranged to give a narrow beamwidth in the elevation plane and a wide beamwidth on the azimuth plane. This can be achieved by aligning the electric field plane of each element to the array axis. Employing a 3 dB-tapered feed network, the array has a side lobe level of less than -20 dB and wider azimuth beam width of 12.8$^{\circ}$ simultaneously.

  • PDF

Modeling of an On-Chip Power/Ground Meshed Plane Using Frequency Dependent Parameters

  • Hwang, Chul-Soon;Kim, Ki-Yeong;Pak, Jun-So;Kim, Joung-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.192-200
    • /
    • 2011
  • This paper proposes a new modeling method for estimating the impedance of an on-chip power/ground meshed plane. Frequency dependent R, L, and C parameters are extracted based on the proposed method so that the model can be applied from DC to high frequencies. The meshed plane model is composed of two parts: coplanar multi strip (CMS) and conductor-backed CMS. The conformal mapping technique and the scaled conductivity concept are used for accurate modeling of the CMS. The developed microstrip approach is applied to model the conductor-backed CMS. The proposed modeling method has been successfully verified by comparing the impedance of RLC circuit based on extracted parameters and the simulated impedance using a 3D-field solver.

Edge Crack Behavior in a Three Layered Piezoelectric Composite Under Anti-Plane Impact Loads (면외 충격하중을 받는 3층 압전 복합재료내의 가장자리 균열거동)

  • Kwon, Soon-Man;Son, Myung-Son;Lee, Kang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2172-2179
    • /
    • 2002
  • In this paper, we examine the dynamic electromechanical behavior of an edge crack in a piezoelectric ceramic layer bonded between two elastic layers under the combined anti-plane mechanical shear and in-plane electric transient loadings. We adopted both the permeable and impermeable crack boundary conditions. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the dynamic energy release rate are presented to show the dependences upon the geometry, material combination, electromechanical coupling coefficient and electric field.

Growth of Non-Polar a-plane ZnO Layer On R-plane (1-102) Sapphire Substrate by Hydrothermal Synthesis (저온 수열 합성법에 의해 (1-102) 사파이어 기판상에 성장된 무분극 ZnO Layer 에 관한 연구)

  • Jang, Jooil;Oh, Tae-Seong;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.45-49
    • /
    • 2014
  • In this study, we grew non-polar ZnO nanostructure on (1-102) R-plane sapphire substrates. As for growth method of ZnO, we used hydrothermal synthesis which is known to have the advantages of low cost and easy process. For growth of non-polar, the deposited AZO seed buffer layer with of 80 nm on R-plane sapphire by radio frequency magnetron sputter was annealed by RTA(rapid thermal annealing) in the argon atmosphere. After that, we grew ZnO nanostructure on AZO seed layer by the added hexamethylenetramine (HMT) solution and sodium citrate at $90^{\circ}C$. With two types of additives into solution, we investigated the structures and shapes of ZnO nanorods. Also, we investigate the possibility of formation of 2D non-polar ZnO layer by changing the ratio of two additives. As a result, we could get the non-polar A-plane ZnO layer with well optimized additives' concentrations.

Elastic Analysis of an Unbounded Elastic Solid with an Inclusion Considering Composite Fiber Volume Fraction (섬유 체적분율을 고려한, 단일의 함유체를 포함한 무한고체에서의 탄성해석)

  • Lee, Jung-Ki;Han, Hui-Duck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.89-96
    • /
    • 2007
  • A volume integral equation method (VIEM) is applied for the effective analysis of plane elastostatic problems in unbounded solids containing single isotropic inclusion of two different shapes considering composite fiber volume fraction. Single cylindrical inclusion and single square cylindrical inclusion are considered in the composites with six different fiber volume fractions (0.25, 0.30, 0.35, 0.40, 0.45, 0.50). Using the rule of mixtures, the effective material properties are calculated according to the corresponding composite fiber volume fraction. The analysis of plane elastostatic problems in the unbounded effective material containing single fiber that covers an area corresponding to the composite fiber volume fraction in the bounded matrix material are carried out. Thus, single fiber, matrix material with a finite region, and the unbounded effective material are used in the VIEM models for the plane elastostatic analysis. A detailed analysis of stress field at the interface between the matrix and the inclusion is carried out for single cylindrical or square cylindrical inclusion. Next, the stress field is compared to that at the interface between the matrix and the single inclusion in unbounded isotropic matrix with single isotropic cylindrical or square cylindrical inclusion. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of inclusions. Through the analysis of plane elastostatic problems, it will be established that this new method is very accurate and effective for solving plane elastic problems in unbounded solids containing inclusions considering composite fiber volume fraction.