• Title/Summary/Keyword: planar features

Search Result 91, Processing Time 0.026 seconds

Rip Currents Generation and Longshore Currents behind Bars (이안류 생성 원인 및 연안사주 지형에서의 연안류 생성)

  • Oh, Tae-Myoung;Robert G. Dean
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.91-107
    • /
    • 1995
  • In this paper, previously proposed mechanisms of generation and maintenance of rip currents are grouped into three broad categories; (1) prismatic topography models, (2) non-prismatic topography models and (3) structural controls by natural and/or constructed features, such as headlands, piers. groins, jetties. etc. The prismatic models can explain the occurrence of a rip current on a planar beach, while non-prismatic model needs undulatory topography inside the surf zone to generate and maintain a rip current. Yet more detailed and thorough studies need to be conducted to include all relevant variables and to clarify the mechanism(s) governing rip current. Next a simple model is presented to predict mean longshore currents behind a longshore bar (or submerged breakwaters) by considering mass transport over the bar and the bar morphology. This hydrodynamic model could be extended to include the sedimentary feedback mechanism.

  • PDF

Bulletproof Performance of Hybrid Plates using a Composite Laminated with Abalone Shell Fragments (전복껍질 메소절편 기반 복합소재 합판 제작 및 이를 이용한 하이브리드 판재의 방탄특성)

  • Kim, Jeoung Woo;Kang, Dae Won;Paik, Jong Gyu;Youk, Youngki;Park, Jeong Ho;Shin, Sang-Mo
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.43-51
    • /
    • 2019
  • Nacre of abalone shell features a "brick-and-mortar" microstructure, in which micro-plates of calcium carbonate are bonded by nanometers-thick layers of chitin and proteins. Due to the microstructure and its unique toughening mechanisms, nacre possesses an excellent combination of specific strength, stiffness and toughness. This study deals with the possibility of using nacre fragments obtained from abalone shell for making a bulletproof armor system. A composite plate laminated with abalone shell fragments is made and compression and bend tests are carried out. In addition, a bulletproof test is performed with hybrid armor systems which are composed of an alumina plate, a composite plate, and aramid woven fabric to verify the ballistic performance of nacre. The compressive strength of the composite plate is around 258.3 MPa. The bend strength and modulus of the composite plate decrease according to the plate thickness and are about 149.2 MPa and 50.3 GPa, respectively, for a 4.85 mm thick plate. The hybrid armor system with a planar density of $45.2kg/m^2$, which is composed of an 8 mm thick alumina plate, a 2.4 mm thick composite plate, and 18 layers of aramid woven fabric, satisfy the NIJ Standard 0101.06 : 2008 Armor Type IV. These results show that a composite plate laminated with abalone shell fragments can be used for a bulletproof armor system as an interlayer between ceramic and fabric to decrease the armor system's weight.

Petrographic Study of Mn-bearing Gondite (Birimian) of Téra Area in the Leo-Man Shield (West African Craton) in Niger.

  • Hamidou GARBA SALEY;Moussa KONATE;Olugbenga Akindeji OKUNLOLA
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.25-39
    • /
    • 2024
  • The Téra manganese deposit represents the most significant manganese mineralization discovered in Niger up today. The main host rocks of this ore are gondites, which are a garnet and quartz rich metamorphic rocks. The supergene weathering developed an alteration profile on these gondites. This study aims to identify the mineralogical composition of gondites and associated rocks, in order to highlight the origine of rocks and the manganese enrichment. The methodological approach adopted involved a field study followed by polarizing microscopic analysis using transmitted and reflected lights. Additionally, quantitative X-ray diffraction (XRD) analysis was performed to assess the manganese ore minerals present in the gondite and associated rocks, including mica schists, amphibolites, and quartzites. The petrographic study revealed a paragenesis characterized by the presence of kyanite, staurolites, garnets and plagioclases that are generally poikiloblasts with quartz and opaque minerals inclusions, emphasizing the internal schistosity which is planar, helicitic or microfolded. These features indicate a prograde metamorphism until high-pressure amphibolite facies conditions. These conditions are followed by greenschist facies conditions marked by calcite, epidote, muscovite, chlorite and muscovite assemblage which emphasizes the vertical tectonics. Depending on the alteration process, the manganese ore exhibit a granular texture at the bottom of the gondite hills, transitioning to a colloform texture towards the top, passing through the epigenization and replacement texture. The XRD analysis further revealed that the studied rocks originated from a volcano-sedimentary complex, characterized by alternating marly, arenaceous and pelitic sequences associated with submarine exhalations.

Diffusion-Weighted MR Imaging of Intracerebral Hemorrhage

  • Bo Kiung Kang;Dong Gyu Na;Jae Wook Ryoo;Hong Sik Byun;Hong Gee Roh;Yong Seon Pyeun
    • Korean Journal of Radiology
    • /
    • v.2 no.4
    • /
    • pp.183-191
    • /
    • 2001
  • Objective: To document the signal characteristics of intracerebral hemorrhage (ICH) at evolving stages on diffusion-weighted images (DWI) by comparison with conventional MR images. Materials and Methods: In our retrospective study, 38 patients with ICH underwent a set of imaging sequences that included DWI, T1-and T2-weighted imaging, and fluid-attenuated inversion recovery (FLAIR). In 33 and 10 patients, respectively, conventional and echo-planar T2* gradient-echo images were also obtained. According to the time interval between symptom onset and initial MRI, five stages were categorized: hyperacute (n=6); acute (n=7); early subacute (n=7); late subacute (n=10); and chronic (n=8). We investigated the signal intensity and apparent diffusion coefficient (ADC) of ICH and compared the signal intensities of hematomas at DWI and on conventional MR images. Results: DWI showed that hematomas were hyperintense at the hyperacute and late subacute stages, and hypointense at the acute, early subacute and chronic stages. Invariably, focal hypointensity was observed within a hyperacute hematoma. At the hyperacute, acute and early subacute stages, hyperintense rims that corresponded with edema surrounding the hematoma were present. The mean ADC ratio was 0.73 at the hyperacute stage, 0.72 at the acute stage, 0.70 at the early subacute stage, 0.72 at the late subacute stage, and 2.56 at the chronic stage. Conclusion: DWI showed that the signal intensity of an ICH may be related to both its ADC value and the magnetic susceptibility effect. In patients with acute stroke, an understanding of the characteristic features of ICH seen at DWI can be helpful in both the characterization of intracranial hemorrhagic lesions and the differentiation of hemorrhage from ischemia.

  • PDF

A Study on the Paleotopographic and Structural Analyses of Cherwon Castle in Taebong (태봉 철원도성의 고지형과 구조 분석 연구)

  • HEO, Uihaeng;YANG, Jeongseok
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.2
    • /
    • pp.38-55
    • /
    • 2021
  • Cherwon Castle is located in Pungcheonwon, Cherwon, in the center of the Korean Peninsula. Currently, it is split across the Demilitarized Zone (DMZ) between the two Koreas. It attracts attention as a symbol of inter-Korean reconciliation and as cultural heritage that serves as data in making important policy decisions on the DMZ. Despite its importance, however, there has not been sufficient investigation and research done on Cherwon Castle. This is due to the difficulty involved in investigation and research and is caused by the site's inaccessibility. As a solution, the current investigative methods in satellite and aerial archeology can be applied to interpret and analyze the structure of Cherwon Castle and the features of its inner space zoning. Cherwon Castle was built on the five flat hills that begin in the northern mountainous hills and stretch to the southwest. The inner and outer walls were built mainly on the hilly ridges, and the palace wall was built surrounding a flat site that was created on the middle hill. For each wall, the sites of the old gates, which were erected in various directions , have been identified. They seem to have been built to fit the direction of buildings in the castle and the features of the terrain. The castle was built in a diamond shape. The old sites of the palace and related buildings and landforms related to water drainage were identified. It was verified that the roads and the gates were built to run from east to west in the palace. In the spaces of the palace and the inner castle, flat sites were created to fit different landforms, and building sites were arranged there. Moreover, the contour of a reservoir that is believed to be the old site of a pond has been found; it lies on the vertical extension of the center line that connects the palace and the inner castle. Between the inner castle and the outer castle, few vestiges of old buildings were found, although many flat sites were discovered. Structurally, Cherwon Castle is rotated about nine degrees to the northeast, forming a planar rectangle. The planar structure derives from the castle design that mimics the hilly landform, and the bending of the southwestern wall also attests to the intention of the architects to avoid the wetland. For now, it is impossible to clearly describe the functions and characters of the building sites inside the castle. However, it is believed that the inner castle was marked out for space for the palace and government offices, while the space between the outer and inner castle was reserved as the living space for ordinary people. The presence of the hilly landform diminishes the possibility that a bangri (grid) zoning system existed. For some of the landforms, orderly zoning cannot be ruled out, as flat areas are commonly seen. As surveys have yet to be conducted on the different castles, the time when the walls were built and how they were constructed cannot be known. Still, the claim to that the castle construction and the structuring of inner spaces were inspired by the surrounding landforms is quite compelling.

SLAM Method by Disparity Change and Partial Segmentation of Scene Structure (시차변화(Disparity Change)와 장면의 부분 분할을 이용한 SLAM 방법)

  • Choi, Jaewoo;Lee, Chulhee;Eem, Changkyoung;Hong, Hyunki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.132-139
    • /
    • 2015
  • Visual SLAM(Simultaneous Localization And Mapping) has been used widely to estimate a mobile robot's location. Visual SLAM estimates relative motions with static visual features over image sequence. Because visual SLAM methods assume generally static features in the environment, we cannot obtain precise results in dynamic situation including many moving objects: cars and human beings. This paper presents a stereo vision based SLAM method in dynamic environment. First, we extract disparity map with stereo vision and compute optical flow. We then compute disparity change that is the estimated flow field between stereo views. After examining the disparity change value, we detect ROIs(Region Of Interest) in disparity space to determine dynamic scene objects. In indoor environment, many structural planes like walls may be determined as false dynamic elements. To solve this problem, we segment the scene into planar structure. More specifically, disparity values by the stereo vision are projected to X-Z plane and we employ Hough transform to determine planes. In final step, we remove ROIs nearby the walls and discriminate static scene elements in indoor environment. The experimental results show that the proposed method can obtain stable performance in dynamic environment.

Analysis of Three Dimensional Positioning Accuracy of Vectorization Using UAV-Photogrammetry (무인항공사진측량을 이용한 벡터화의 3차원 위치정확도 분석)

  • Lee, Jae One;Kim, Doo Pyo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.525-533
    • /
    • 2019
  • There are two feature collection methods in digital mapping using the UAV (Unmanned Aerial Vehicle) Photogrammetry: vectorization and stereo plotting. In vectorization, planar information is extracted from orthomosaics and elevation value obtained from a DSM (Digital Surface Model) or a DEM (Digital Elevation Model). However, the exact determination of the positional accuracy of 3D features such as ground facilities and buildings is very ambiguous, because the accuracy of vectorizing results has been mainly analyzed using only check points placed on the ground. Thus, this study aims to review the possibility of 3D spatial information acquisition and digital map production of vectorization by analyzing the corner point coordinates of different layers as well as check points. To this end, images were taken by a Phantom 4 (DJI) with 3.6 cm of GSD (Ground Sample Distance) at altitude of 90 m. The outcomes indicate that the horizontal RMSE (Root Mean Square Error) of vectorization method is 0.045 cm, which was calculated from residuals at check point compared with those of the field survey results. It is therefore possible to produce a digital topographic (plane) map of 1:1,000 scale using ortho images. On the other hand, the three-dimensional accuracy of vectorization was 0.068~0.162 m in horizontal and 0.090~1.840 m in vertical RMSE. It is thus difficult to obtain 3D spatial information and 1:1,000 digital map production by using vectorization due to a large error in elevation.

A Camera Tracking System for Post Production of TV Contents (방송 콘텐츠의 후반 제작을 위한 카메라 추적 시스템)

  • Oh, Ju-Hyun;Nam, Seung-Jin;Jeon, Seong-Gyu;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.692-702
    • /
    • 2009
  • Real-time virtual studios which could run only on expensive workstations are now available for personal computers thanks to the recent development of graphics hardware. Nevertheless, graphics are rendered off-line in the post production stage in film or TV drama productions, because the graphics' quality is still restricted by the real-time hardware. Software-based camera tracking methods taking only the source video into account take much computation time, and often shows unstable results. To overcome this restriction, we propose a system that stores camera motion data from sensors at shooting time as common virtual studios and uses them in the post production stage, named as POVIS(post virtual imaging system). For seamless registration of graphics onto the camera video, precise zoom lens calibration must precede the post production. A practical method using only two planar patterns is used in this work. We present a method to reduce the camera sensor's error due to the mechanical mismatch, using the Kalman filter. POVIS was successfully used to track the camera in a documentary production and saved much of the processing time, while conventional methods failed due to lack of features to track.

Image Warping Using Vector Field Based Deformation and Its Application to Texture Mapping (벡터장 기반 변형기술을 이용한 이미지 와핑 방법 : 텍스쳐 매핑에의 응용을 중심으로)

  • Seo, Hye-Won;Cordier, Frederic
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.5
    • /
    • pp.404-411
    • /
    • 2009
  • We introduce in this paper a new method for smooth foldover-free warping of images, based on the vector field deformation technique proposed by Von Funck et al. It allows users to specify the constraints in two different ways: positional constraints to constrain the position of a point in the image and gradient constraints to constrain the orientation and scaling of some parts of the image. From the user-specified constraints, it computes in the image domain a C1-continuous velocity vector field, along which each pixel progressively moves from its original position to the target. The target positions of the pixels are obtained by solving a set of partial derivative equations with the 4th order Runge-Kutta method. We show how our method can be useful for texture mapping with hard constraints. We start with an unconstrained planar embedding of a target mesh using a previously known method (Least Squares Conformal Map). Then, in order to obtain a texture map that satisfies the given constraints, we use the proposed warping method to align the features of the texture image with those on the unconstrained embedding. Compared to previous work, our method generates a smoother texture mapping, offers higher level of control for defining the constraints, and is simpler to implement.

Stereo Vision based on Planar Algebraic Curves (평면대수곡선을 기반으로 한 스테레오 비젼)

  • Ahn, Min-Ho;Lee, Chung-Nim
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.1
    • /
    • pp.50-61
    • /
    • 2000
  • Recently the stereo vision based on conics has received much attention by many authors. Conics have many features such as their matrix expression, efficient correspondence checking, abundance of conical shapes in real world. Extensions to higher algebraic curves met with limited success. Although irreducible algebraic curves are rather rare in the real world, lines and conics are abundant whose products provide good examples of higher algebraic curves. We consider plane algebraic curves of an arbitrary degree $n{\geq}2$ with a fully calibrated stereo system. We present closed form solutions to both correspondence and reconstruction problems. Let $f_1,\;f_2,\;{\pi}$ be image curves and plane and $VC_P(g)$ the cone with generator (plane) curve g and vertex P. Then the relation $VC_{O1}(f_1)\;=\;VC_{O1}(VC_{O2}(f_2)\;∩\;{\pi})$ gives polynomial equations in the coefficient $d_1,\;d_2,\;d_3$ of the plane ${\pi}$. After some manipulations, we get an extremely simple polynomial equation in a single variable whose unique real positive root plays the key role. It is then followed by evaluating $O(n^2)$ polynomials of a single variable at the root. It is in contrast to the past works which usually involve a simultaneous system of multivariate polynomial equations. We checked our algorithm using synthetic as well as real world images.

  • PDF