• Title/Summary/Keyword: planar array antenna

Search Result 105, Processing Time 0.022 seconds

Development of Wide-Band Planar Active Array Antenna System for Electronic Warfare (전자전용 광대역 평면형 능동위상배열 안테나 시스템 개발)

  • Kim, Jae-Duk;Cho, Sang-Wang;Choi, Sam Yeul;Kim, Doo Hwan;Park, Heui Jun;Kim, Dong Hee;Lee, Wang Yong;Kim, In Seon;Lee, Chang Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.6
    • /
    • pp.467-478
    • /
    • 2019
  • This paper describes the development and measurement results of a wide-band planar active phase array antenna system for an electronic warfare jamming transmitter. The system is designed as an $8{\times}8$ triangular lattice array using a $45^{\circ}$ slant wide-band antenna. The 64-element transmission channel is composed of a wide-band gallium nitride(GaN) solid state power amplifier and a gallium arsenide(GaAs) multi-function core chip(MFC). Each GaAs MFC includes a true-time delay circuit to avoid a wide-band beam squint, a digital attenuator, and a GaAs drive amplifier to electronically steer the transmitted beam over a ${\pm}45^{\circ}$ azimuth angle and ${\pm}25^{\circ}$ elevation angle scan. Measurement of the transmitted beam pattern is conducted using a near-field measurement facility. The EIRP of the designed system, which is 9.8 dB more than the target EIRP performance(P), and the ${\pm}45^{\circ}$ azimuth and ${\pm}25^{\circ}$ elevation beam steering fulfill the desired specifications.

Compact Planar Array Antenna of a Vehicle Navigator for 5.8GHz DSRC scheme (5.8GHz DSRC 방식의 무선통신을 위한 자동차 내비게이션 단말기의 소형 평면배열 안테나)

  • Yun, Gi-Ho
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2012
  • In this paper, microstrip array antenna is proposed for the wireless communication of DSRC(dedicated short range communication) scheme at 5.8GHz, which works as a part of the Navigation terminal. The microstrip patches minimized from a rectangular microstrip antenna with a half wavelength are arrayed to be mounted on the narrow and long area in the top side of the navigation terminal. Besides, the array antenna can limit its own beamwidth to the driving lane and has better directivity. It is simulated to verify the validity of the proposed application. The prototype fabricated has a volume of $18{\times}40{\times}0.8mm^3$. From the measurement, it has circular polarization performance of 4dB axial ratio over 40MHz frequency band. In addition, antenna gain of 6.2dBi and 3dB beamwidth of $70^{\circ}$ at cross section of driving lane have been achieved.

A Study on the Impedance Matching of Phased Array Antennas (위상배열 안테나의 임피던스 정합에 관한 연구)

  • 하헌태;김세윤
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.2
    • /
    • pp.24-32
    • /
    • 1992
  • The impedance matching properties of infinite planar arrays of rectangular waveguides with dielectric plug loading and sheath covering are studied here. The effects of several involved parameters on the impedance matching of the phased array antenna are investigated by calculating the reflection coefficients numerically. The improvement of impedance matching and the appearance of forced surface wave resonances are also discussed.

  • PDF

The Slotted Array In-motion Antenna for Receiving a Tilted Linear Polarization using a single layer film (기울어진 선형편파 수신을 위한 차량용 도파관 슬롯 배열 안테나)

  • Son, Kwang-Seop;Park, Chan-Gu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.9
    • /
    • pp.52-59
    • /
    • 2009
  • In this paper, the planar waveguide slotted array antenna is presented, which has the 3-layered structure of feeding networks for a high gain. Due to the ionosphere which generates 'Faraday rotation', the skew is happened between the signal radiated from an artificial satellite and the receiving antenna. This causes a polarization loss. In this paper, to remove this polarization loss, the dumbbell shaped linear polarizer using a single layer film is proposed. The gain of proposed antenna is 29.4dB.

Investigating Electromagnetic Power Transfer Ratio of Circular Polarizing Planar Metasurface Lens

  • Lee, ChangHyeong;Han, DaJung;Khattak, Muhamad Kamran;Kahng, Sungtek
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.1
    • /
    • pp.37-40
    • /
    • 2016
  • We designed an antenna structure with the circular polarization metamaterial superstrate which increases the directivity of the primary antenna as a lens. The metamaterial superstrate removes the necessity of the array antenna and complicated feed. Plus, it provides the Fabry-perot cavity with the circular polarization. With regard to the primary antenna, a CRLH antenna is adopted to have the size-reduction from the conventional half-wavelength patch antenna.

A Study on Microstrip Log-Periodic Antenna for Receiving the Direct Broadcasting Satellite(DBS) Signal (위성방송 수신을 위한 대수주기 마이크로스트립 안테나에 대한 연구)

  • Jang, Won-Ho;Jin, Jae-Sun;Lee, Yun-Hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.101-107
    • /
    • 2003
  • In this study, we provide a single element log-periodic antenna that the feeding networks and array structures are aperture coupled and series dipole array type. We made the antenna for direct receiving the Moogoongwha satellite broadcasting signal. The transmission power was able to feed the patch dipole in series due to lay perpendicularly 8 series patch dipole on tapered slot. The patch dipole radiation pattern which fed in series power, make the main beam direction up $37^{\circ}{\sim}42^{\circ}$ within the BS/CS bandwidth. The main beam gain was measured 9.31~11.03 dBi. Using 32 elements to array the elements properly, we acquire $4{\times}8$ array structure on limited PCB board. As a result, it has been found that the new planar DBS antenna structure have high gain over 10dBi and acceptable elevation angle over 42 degree, and we can apply this result to commercial DBS reception antenna manufacturing.

  • PDF

Dice-Five Polarization-Agile Corner-Fed Patch Array Antenna

  • Vallecchi, Andrea
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.250-256
    • /
    • 2005
  • A novel planar polarization-agile microstrip subarray is proposed and its performance assessed by a thorough numerical investigation. The subarray consists of five square patches with a central element, directly coupled to a pair of microstrip feed lines by a cross-shaped aperture, which spreads the power outwards to the other patches through a network of suitable connections. By properly exciting the antenna at its input ports, any kind of polarization of the radiated field can be accomplished with fairly low cross-polarization levels. Moreover, since only two feed lines are required to drive the whole subarray, polarization agility is simply and attractively achieved by a single phase-shift circuit. The design concept is described and the results of the analyses and simulations performed by two completely independent full-wave approaches are presented and discussed.

  • PDF

Small Broadband Phased Array Antenna with Compact Phase-Shift Circuits (간결한 위상 변위 회로를 갖는 소형 광대역 위상 배열 안테나)

  • 한상민;권구형;김영식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1071-1078
    • /
    • 2003
  • In this paper, the planar, compact, and broadband phased array antenna system for IMT-2000 applications has been investigated. Two methods far designing a low-cost and low-complex beam-farming network are proposed. First, a new compact and broadband phase shifter with continuously controlled phase bits is designed by using parallel coupled lines. Second, its equivalent phase delay line is suggested to be capable of replacing the complex phase shifter with a reference phase bit on a phased array antenna. For the purpose of achieving the broadband system, in addition to the broadband phase shifter, a wide-slot antenna with a ground reflector is utilized as an element antenna. Therefore, the phased array antenna system has achieved compact size, broad bandwidth, and wide steering angle, although it has low complexity and low fabrication cost. The 3${\times}$1 phased array antenna system has a compact size of 1.6 λ${\times}$ l.6 λ, which is the sufficient ground plane of the wide-slot antenna. Experimental results present that the S$\_$11/ has less than 15 dB within the band and its radiation patterns on an E-plane have the capability of steering an antenna beam from -29$^{\circ}$to +30$^{\circ}$.

Optimal Inter-Element Spacing of FD-MIMO Planar Array in Urban Macrocell with Elevation Channel Modelling

  • Abubakari, Alidu;Raymond, Sabogu-Sumah;Jo, Han-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4759-4780
    • /
    • 2017
  • Full Dimension multiple input multiple output (FD-MIMO) architecture employs a planar array design at the Base Station (BS) to provide high order multi-user MIMO (MU-MIMO) via simultaneous data transmission to large number of users. With FD-MIMO, the BS can also adjust the beam direction in both elevation and azimuth direction to concentrate the energy on the user of interests while minimizing the interference leakage to co-scheduled users in the same cell or users in the neighboring cells. In a typical highly populated macrocell environment, modelling the elevation angular characteristics of three-dimensional (3D) channel is critical to understanding the performance limits of the FD-MIMO system. In this paper, we study the throughput performance of FD-MIMO system with varying elevation angular spread and inter-element spacing using a 3D spatial channel model. Our results show that for a typical urban scenario, horizontal beamforming with correlated antenna spacing achieves optimal performance but by restricting the spread of elevation angles of departure, elevation beamforming achieves high array gain with wide inter-element spacing. We also realize significant gains due to spatial array processing via modelling the elevation domain and varying the inter-element spacing for both the transmitter and receiver.

Data-link antenna for mounting low-RCS Unmanned Aerial Vehicles(UAV) (저피탐 무인기 탑재를 위한 데이터링크용 안테나에 관한 연구)

  • Park, Jin-Woo;Jung, Eun-Tae;Park, Il-Hyun;Seo, Jong-Woo;Jung, Jae-Soo;Yu, Byung-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1110-1116
    • /
    • 2021
  • In this paper, we propose a conformal Ku-band data link antenna to ensure low RCS of stealth UAV. As a phased array antenna with electrical beam steering function, a transmitter and a receiver were designed and manufactured for FDD communication, respectively. Each antenna is designed as a 12*12 planar array antenna and has a function to form a uni-directional pattern and a bi-directional pattern through phase control of unit elements. The beam steering range is designed to be able to steer up to 60 degrees in theta direction and 360 degrees in the phi direction. As a result of manufacturing and measurement, the conformal type radome has low transmission loss and meets the required specifications including system performance. The feasibility of mounting the stealth UAV has been confirmed, and future research directions such as interworking of baseband devices and conversion to digital beam steering function are suggested.