• Title/Summary/Keyword: plain water

Search Result 448, Processing Time 0.027 seconds

An Experiment Study on Drying Shrinkage Reduction of Concrete Slab (슬래브 구조물용 콘크리트의 건조수축 저감에 관한 연구)

  • Sohn Yu Shin;Lee Seung Hoon;Park Chan Kyu;Kim Gyu Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.592-595
    • /
    • 2004
  • This Study discusses the properties of drying shrinkage of concrete slab with W/B, water content, fiber and anti-shrinkage agent. According to results, drying shrinkage is reduced with decrease of water content and W/B. Also, compared with plain concrete, drying shrinkage is reduced by using of fiber, anti-shrinkage agent and adding ratio of anti - shrinkage agent. Therefore, in the range of workability if water content and W/B are reduced and using of fiber and anti-shrinkage agent are performed properly, crack by drying shrinkage can be prevented effectively.

  • PDF

Enhancement of thin film evaporation on low-fin tubes (낮은핀관의 액막 증발 촉진에 관한 연구)

  • 김내현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.674-682
    • /
    • 1998
  • In this study, thin film evaporation of water on low-fin tubes were experimentally investigated. Five low-fin tubes with different fin spacing and fin height were tested. Test range covered 0.146kg/ms $\leq$$\Gamma$$\leq$0.219kg/ms and 10㎾/$\m^2$$\leq$q $\leq$70㎾/$\m^2$. Saturation temperature was loot. Compared with the plain tube, low fin tubes enhanced the water film evaporation from 60% to 100%. Tubes with fin spacing smaller than 2mm and fin height higher than 1mm performed better than tubes with other fin configuration. However, when fin spacing was too small at high film flow or fin height was too high at low film flow, the performance decreased. The heat transfer coefficient slightly increased as the flow rate increased. Correlations are developed based on present data.

  • PDF

Enhanced Boiling Heat Transfer of Water Using Multi-Stage Electroplating Technique (전기 다단 도금법을 이용한 물의 핵비등열전달 촉진 실험)

  • Cho, Dae-Gwan;You, Seung-Mun;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1590-1596
    • /
    • 2003
  • The experiments of boiling heat transfer were performed to investigate the boiling enhancement in saturated water by using multi-stage electroplated surface. In order to optimize the boiling performance, current flux and duration in multi-stage electroplating were varied. Current flux, 2 $A/12cm^2$ and 0.33 $A/cm^2$, and duration ranging from 15 second to 50 second are considered. The results showed that multi-stage electro plated surfaces generate enhancement of boiling parameters such as boiling incipient superheat, boiling heat transfer coefficient, and critical heat flux compared to plain surface. The SEM images of the coated surfaces were captured to examine the structure of porous surface, which provides the enhancement of boiling heat transfer.

  • PDF

Effect of Admixture on the Properties of High Strength Hardened Cement Paste (고강도 시멘트 경화체의 특성에 미치는 혼합재의 영향)

  • 김정환;최상흘;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.495-500
    • /
    • 1990
  • Investigation for the preparation of high strength hardened cement paste using ordinary portland cement, hydroxypropyl methyl cellulose (HPMC) with admixtures was carried out. For molding of the specimen, the paste was mixed with 0.1 of water cement ratio by twin roll mill. The maximum flexural strength of dried hardened cement paste was about 600∼700kg/㎠. When the SiC was added to the paste, the dry flexural strength was about 920kg/㎠ and the young's modulus was 5.2×105kg/㎠. When the admixtures were added to the specimens, wet strength of the harened cement paste immersed in water was showed around 50∼100kg/㎠ higher than that of plain specimen. Consequently it is recognized the water stability of hardened cement paste was remarkably improved by adequate admixture.

  • PDF

Effect of Twisted - Tape Tubulators on Heat Transfer and Flow Friction inside a Double Pipe Heat Exchanger

  • Phitakwinai, Sutida;Nilnont, Wanich;Thawichsri, Kosart
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.124-131
    • /
    • 2015
  • Computational fluid dynamics (CFD) has been employed for the Heat exchanger efficiency of a counter flow heat exchanger. The Heat exchanger efficiency has been assessed by considering the computed Nusselt number and flow friction characteristics in the double pipes heat exchanger equipped with two types twisted-tapes: (1) single clockwise direction and (2) alternate clockwise and counterclockwise direction. Cold and hot water are used as working fluids in shell and tube side, respectively. Hot and cold water inlet mass flow rates ranging are between 0.04 and 0.25 kg/s, and 0.166 kg/s, respectively. The inlet hot and cold water temperatures are 54 and $30^{\circ}C$, respectively. The results obtained from the tube with twisted-tapes insert are compared with plain tube. Nusselt number and friction factor obtained by CFD simulations were compared with correlations available in the literature. The numerical results were found in good agreement with the results reported in literature.

Strength and durability study on cement mortar containing nano materials

  • Ashok, M.;Parande, A.K.;Jayabalan, P.
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.99-111
    • /
    • 2017
  • Nano particles have been gaining increasing attention and applied in many fields to fabricate new materials with novel functions due to their unique physical and chemical properties. In the present study two nano materials, namely nano silica (NS) and nano clay metakaolin (NMK) were partially replaced with ordinary Portland cement (OPC). The replacement level was varied from 0.5 to 2.0% in OPC and blended in cement mortar with a water cement ratio of 0.40. Mechanical property studies and durability experiments such as compressive strength, tensile strength, water absorption, depth of chloride penetration test. Nano silica was synthesized from rice husk ash and analyze the size using particle size analyzer. The results indicate that the compressive and tensile strength of the cement mortars containing nano materials were higher strength compared to the plain mortar with the same water cement ratio.

Estimation of Heavy Metal Loads at Plain Area of the Rural Watersheds during Farming Season (영농기 농촌 평야지 유역의 중금속 부하량 산정)

  • Kim, Jin-Ho;Han, Kuk-Heon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.1
    • /
    • pp.85-92
    • /
    • 2008
  • This study was carried out to estimate heavy metal loads at plain area of the rural watersheds during farming season in 2006. The experimental area was belonging to Geum River watershed. That was located at the center of South Korea. Water samples were corrected at two kinds of aspects. One is regular sampling(every two month) and the other is irregular sampling(every rainfall event). The result showed that heavy metal properties of regular samples were highest at May and June with lively agricultural activities. Heavy metal concentration of irregular samples was lower than that of regular samples. But the heavy metal loads of irregular samples were high. The correlation between each heavy metals of regular samples was following as Mn-Cd > Mn-Fe > Mn-Al > Fe-Al > Al-Cd. The correlation of irregular samples was following as Fe-AI > Zn-Mn > Fe-Cd > Cd-Al. Loading rates of daily discharge the plain area of designed rural watershed during farming season were Al 3.070 kg/day, Cu 0.526 kg/day, Fe 0.745 kg/day, Zn 0.314 kg/day, Cd 0.010 kg/day, Cr 0.055 kg/day, Mn 0.140 kg/day and Pb 0.098 kg/day. Loading rate of discharge with heavy metals during the survey period was Al(577.23 kg) > Fe(140.08 kg) > Cu(98.93 kg) > Zn(58.99 kg) > Mn(26.34 kg) > Pb(18.51 kg) > Cr(10.34 kg) > Cd(1.93 kg).

A Study On the Classification and Characteristics of Wetlands - Cases on the Watershed of Tumen River downstream in China - (중국 두만강 하류 유역의 습지 분류 특성에 관한 연구)

  • Zhu, Wei-Hong;Kim, Kwi-Gon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.1
    • /
    • pp.35-50
    • /
    • 2002
  • This study aims to understand wetland distribution and type-specific classification features with a focus on Tumen River downstream in China by adjusting and improving the classification system used in Korea with a reference to international wetland classification systems and their criteria & methods. In this study, wetland types were determined based on hydrology, vegetation, and soil conditions, which are the most basic elements of wetlands. Also, topography analytical map, vegetation analytical map, and soil analytical map for wetland classification were developed and used based on currently available topography map, vegetation map, and soil map. In addition, codes were defined based on topography, location, hydrology, and vegetation. The result shows that, in the Tumen River downstream, wetlands are often found near natural revetment and terrace land & river-bed lakes. In the discovered wetlands, riverine, lacustrine, and inland wetlands were mostly found at system level. Riparian and human-made wetlands were also identified. At a sub-system level, perennial and seasonal wetlands were found to a similar degree. At a class level, perennial open water, herbal plants, and shrubs were mostly found and sandy plain, hydrophytes, and forest tree types were also observed. An overall detailed classification shows that a total of 17 wetland types were found and a large distribution of sand dunes and river-bed lakes, which are scarce in Northeast Asia, indicates that other rare wetland types such as palustrine seasonal sand plain wetland and lacustrine seasonal sand plain wetland may be discovered.

A Study on the Condensation Heat Transfer and Pressure Drop in Internally Grooved Tubes Used in Condenser (응축기용 낮은 핀관의 내부 나선 홈에 의한 응축 열전달 성능과 압력손실에 관한 연구)

  • Han, Kyuil;Cho, Dong-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.212-222
    • /
    • 1998
  • Heat transfer performance improvement by fin and groovs is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapczodially shaped integral-fins having fin density from 748 to 1654fpm(fin per meter) and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also used for comparison. R-11 condensates at saturation state of 32 $^{\circ}C$ on the outside tube surface coded by inside water flow. All of test data are taken at steady state. The heat transfer loop is used for testing singe long tubes and cooling is pumped from a storage tank through filters and folwmeters to the horizontal test section where it is heated by steam condensing on the outside of the tubes. The pressure drop across the test section is measured by menas pressure gauge and manometer. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, overall heat transfer coefficients of finned tube are enhanced up to 1.6 ~ 3.7 times that of a plain tube at a constant Reynolds number. 2. Friction factors are up to 1.6 ~ 2.1 times those of plain tubes. 3. The constant pumping power ratio for the low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio. 4. A tube having a fin density of 1299fpm and 30 grooves has the best heat transfer performance.

  • PDF

Flow Condensation Heat Transfer Characteristic of Hydrocarbon Refrigerants and DME in Horizontal Plain Tube (탄화수소계 냉매들과 DME의 수평 평활관내 흐름 응축 열전달 특성)

  • Park, Ki-Jung;Lee, Min-Hang;Park, Hyun-Shin;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.545-554
    • /
    • 2007
  • Flow condensation heat transfer coefficients(HTCs) of R22, propylene, propane, DME and isobutane are measured on a horizontal plain tube. The main test section in the experimental flow loop is made of a plain copper tube of 9.52 mm outside diameter and 530 mm length. The refrigerant is cooled by passing cold water through an annulus surrounding the test section. Tests are performed at a fixed refrigerant saturation temperature of $40{\pm}0.2^{\circ}C$ with mass fluxes of 100, 200, $300kg/m^2s$ and heat flux of $7.3\sim7.7kW/m^2$. The data are obtained in the vapor Quality range of $10\sim90%$. Test results show that at same mass flux the flow condensation HTCs of propylene, propane, DME and isobutane are higher than those of R22 by up to 46.8%, 53.3%, 93.5% and 61.6% respectively. Also well-known correlations developed based upon conventional fluorocarbon refrigerants predict the present data within a mean deviation of 30%. Finally, the pressure drop increase as the mass flux and Quality increase and isobutane shows the highest pressure drop due to its lowest vapor pressure among the fluids tested.