• 제목/요약/키워드: pixel-based

검색결과 1,754건 처리시간 0.028초

워터마크 및 해상도 적응적인 영상 워터마킹을 위한 딥 러닝 프레임워크 (Deep Learning Framework for Watermark-Adaptive and Resolution-Adaptive Image Watermarking)

  • 이재은;서영호;김동욱
    • 방송공학회논문지
    • /
    • 제25권2호
    • /
    • pp.166-175
    • /
    • 2020
  • 최근 다양한 형태와 종류로 영상 콘텐츠를 가공하고 사용하는 응용분야가 급격히 증가하고 있다. 영상 콘텐츠는 고부가가치의 콘텐츠이므로 영상 콘텐츠의 제작 및 사용이 활성화되기 위해서는 이 콘텐츠의 지적재산권이 보호되어야 하며, 현재까지 그 방법으로 가장 널리 연구되고 있는 것이 디지털 워터마킹이다. 이에 본 논문에서는 딥 러닝 기반의 워터마크 삽입 및 추출 네트워크를 제안한다. 제안하는 방법은 호스트 영상의 비가시성(invisibility)을 보존하면서 악의적/비악의적 공격에 워터마크의 강인성(robustness)를 극대화하는 방법이다. 이 네트워크는 워터마크를 호스트 영상과 똑같은 해상도를 갖도록 변화시키는 전처리 네트워크, 변화된 호스트 영상과 워터마크 정보를 3차원적으로 정합하여 호스트 영상의 해상도를 유지하면서 워터마크 데이터를 삽입하는 네트워크, 그리고 해상도를 줄이며 워터마크를 추출하는 네트워크로 구성된다. 이 네트워크는 다양한 워터마크 영상과 다양한 해상도를 가진 호스트 영상에 대해 다양한 화소값 변경공격과 기하학적 공격을 실험하여 제안하는 방법의 비가시성과 강인성을 검증하고, 이 방법이 범용적이고 실용적임을 보인다.

Himawari-8/AHI 기반 반사도 분광 라이브러리를 이용한 해양 구름 탐지 (Cloud Detection Using HIMAWARI-8/AHI Based Reflectance Spectral Library Over Ocean)

  • 권채영;서민지;한경수
    • 대한원격탐사학회지
    • /
    • 제33권5_1호
    • /
    • pp.599-605
    • /
    • 2017
  • 위성 영상의 정확한 구름 판별 여부는 이를 활용하여 생산되는 다른 산출물들의 정확도에 민감한 영향을 미치므로 매우 중요하다. 특히 해양에서 구름에 오염된 화소는 해수면 온도(Sea Surface Temperature: SST), 해색(ocean color), 클로로필-a(chlorophyll-a) 등 다양한 해양 기반산출물의 주된 오차 요인으로써 해양에서의 정확한 구름 탐지는 필수적이며 이는 해양 순환을 이해하는데 기여한다. 그러나 현재 Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Himawari Imager (AHI) 등 대부분 실시간 운영을 위한 알고리즘에서 사용되고 있는 고정 경계값 검사 방법은 태양-해양-센서의 상대적인 위치에 따라 변화하는 해양의 분광 특성을 고려하지 못하는 단점을 가지고 있다. 따라서 본 연구에서는 NOAA의 Himawari-8 구름 산출물을 이용하여 Himawari-8/AHI 반사도 채널에서의 태양 천정각(Solar Zenith Angle: SZA), 위성 천정각(Viewing Zenith Angle: VZA) 변화에 따른 청천 해양 표면 화소의 반사도를 수집하여 분광 라이브러리를 구축하였고 이를 이용하여 동적 경계값 방법인 Dynamic Time Warping (DTW)기법에 적용하여 구름탐지를 수행하였다. 본 연구의 구름탐지 결과를 Japan Meteorological Agency (JMA)의 구름 산출물과 정성적 비교한 결과 JMA 구름 산출물은 청천 화소를 불확실(unknown)으로 오탐지 및 과대탐지 하는 경향을 보였다. 이에 반해 본 연구에서는 태양 천정각이 고각인 지역에서 과대 탐지 및 오탐지되는 문제점을 개선하였다.

효율적인 이동물체 분할과 고속 추적 알고리즘에 관한 연구 (A Study on Effective Moving Object Segmentation and Fast Tracking Algorithm)

  • 조영석;이주신
    • 정보처리학회논문지B
    • /
    • 제9B권3호
    • /
    • pp.359-368
    • /
    • 2002
  • 본 논문에서는 매칭 에러 영상과 이동벡터를 이용한 효율적인 이동물체 외곽선 검출 알고리즘과 부분외곽선 정보를 이용한 이동물체 고속 추적 알고리즘을 제안하였다. 이동물체의 외곽선 검출은 watershed 알고리즘을 기반으로 확률분포함수를 적용하여 seed 영역을 생성하고 seed 영역을 확장하여 이동물체의 윤곽선을 검출한 다음 이동벡터를 이용하여 최종 외곽선을 추출한다. 외곽선 중 일부를 특징으로 하여 이동물체를 추적하는 알고리즘을 사용하였다. 이동물체 초기 특징 벡터는 이동물체의 외곽선 영역 중 상하좌우의 외곽선 일부분을 특징벡터로 정한다. 다음은 추적단계로 이전 프레임에서 얻은 특징벡터를 이용하여 현재 프레임에서 이동물체의 추적을 수행하였다. 실제영상에 대하여 제안된 알고리즘으로 이동물체추적 모의 실험을 수행한 결과 기존 능동 윤곽선 추적알고리즘은 물체 외곽선 전체를 추적하기 때문에 물체의 외곽선 길이에 따라 처리시간이 변화하지만 제안된 알고리즘은 이동물체의 외곽선 영역을 특징정보로 하여 추적하기 때문에 추적 연산이 간단하였다. 고속이동벡터를 추출 BMA 연산은 기존 알고리즘 보다 연산량이 약 39% 감소였고, 이동 물체 외곽선 검출 알고리즘은 과분할 문제점이 발생하지 않았으며, 상하 좌우 외곽선 정보를 이용하여 이동물체를 추적한 결과 추적오차는 특징벡터의 크기가 $(15\times{5)}$일 때 검색오차가 4 화소 이하로 양호하게 나타났다.

RSA와 해시 함수 기반 이미지 무결성 검증에 관한 연구 (A Study on Image Integrity Verification Based on RSA and Hash Function)

  • 우찬일;구은희
    • 한국산학기술학회논문지
    • /
    • 제21권11호
    • /
    • pp.878-883
    • /
    • 2020
  • 데이터에 대한 불법적인 조작을 방지하기 위해 사용되는 암호 알고리즘은 공개키 암호와 대칭키 암호로 나누어진다. 공개키 암호는 대칭키 암호에 비하여 암호화와 복호화에 많은 시간이 소모되는 단점이 있으나 암호화와 복호화에 서로 다른 키를 사용하기 때문에 대칭키 암호에 비하여 키 관리와 배송이 쉬운 장점이 있다. 그리고 다양한 크기의 데이터를 입력으로 사용하여 항상 고정된 크기의 출력을 생성하는 해시 함수는 디지털 콘텐츠의 무결성 검증을 위해 매우 효과적으로 사용되고 있다. 본 논문에서는 디지털 영상의 변형 여부와 변형 위치를 검출하기 위해 RSA 공개키 암호와 해시 함수를 이용한 방법을 제안한다. 제안 방법에서는 전체 영상을 64×64 크기를 갖는 여러 개의 블록으로 나눈 후 각 블록에 대한 워터마크를 생성하여 해당 블록의 변형 여부를 확인한다. 그리고 블록 내에서 변형이 발생 된 화소는 4×4 크기를 갖는 여러 개의 서브 블록으로 분할하여 각각의 서브 블록에 대한 워터마크를 생성하여 검출한다. 제안방법의 안전성은 암호 알고리즘과 해시 함수의 안전성에 의존한다.

색상과 에지에 대한 통계 처리를 이용한 번호판 영역 분할 알고리즘 (A license plate area segmentation algorithm using statistical processing on color and edge information)

  • 석정철;김구진;백낙훈
    • 정보처리학회논문지B
    • /
    • 제13B권4호
    • /
    • pp.353-360
    • /
    • 2006
  • 본 논문에서는 도로 영상으로부터 차량 번호판 영역을 분할하는 알고리즘을 제시한다. 차량의 번호판 영역이 다른 영역에 비해 차별되는 특정을 세 가지 측면으로 나누어, 1) 번호판의 내부 문자, 2) 번호판의 색상, 3) 번호판의 형태에 대해 분석한다. 전처리 과정에서는, 이와 같은 세 가지 측면을 고려하여 번호판의 내부 영역 및 크기를 판별할 수 있는 임계값들을 계산하며, 이를 위해 표본 영상에 대한 통계적 처리를 수행한다. 차량 영역 분할 알고리즘에서는 임계값들을 이용하여 입력영상 내부에서 번호판 영역이 강조되도록 영상을 이진화한다. 일정한 크기의 윈도우로 이진 영상(binary image) 전체를 탐색하여, 윈도우 내부 픽셀 값의 합이 높은 순으로 서로 중복이 없도록 후보 영역을 찾은 후, 간단한 휴리스틱을 이용하여 후보 영역들 중에서 번호판 영역을 선택한다. 이 알고리즘은 번호판의 변형 또는 색상 명암도에 차이가 있는 경우에 대해서 안정적이다. 또한 이 알고리즘은 복잡한 전처리 과정을 요구하지 않고, 적은 수의 표본 영상에 대한 통계 처리만으로도 228장의 실험 영상들에 대해 97.8% 정도의 높은 성공률을 보였다. 프로토타입 시스템을 구현한 결과는 512M 바이트 메모리를 장착한 3GHz 펜티엄4 PC에서 $1280{\times}960$ 해상도의 영상 1장당 평균 0.676초의 처리 속도를 보였다.

유방 초음파영상에서 질감특성분석 알고리즘을 이용한 컴퓨터보조진단의 적용 (Application of Computer-Aided Diagnosis a using Texture Feature Analysis Algorithm in Breast US images)

  • 이진수;김창수
    • 한국산학기술학회논문지
    • /
    • 제16권1호
    • /
    • pp.507-515
    • /
    • 2015
  • 본 연구는 초음파영상에서 컴퓨터보조진단으로 유방질환의 병변인식률을 알아보고자 6가지 질감특성분석 파라미터(평균밝기, 대조도, 평탄도, 왜곡도, 균일도, 엔트로피) 알고리즘을 제안하였다. 2013년 8월에서 2014년 1월까지 부산소재 대학병원을 내원한 환자 중 영상의학과 전문의의 판독과 세포병리학 진단 결과를 토대로 한 90증례의 유방 초음파영상을 대상으로 하였다. 연구방법은 유방 초음파영상에서 관심영역을 $50{\times}50$ 픽셀 크기로 설정하였으며, 획득된 실험영상(정상, 양성, 악성)에 히스토그램 평활화의 전처리 과정 후 MATLAB을 이용한 질감특성분석 알고리즘의 결과값을 산출하였다. 그 결과 제안된 질감특성분석 파라미터 중 평균밝기, 왜곡도, 균일도, 엔트로피의 정상과 악성의 병변인식률은 100%로 높게 나타났으며. 정상과 양성의 병변인식률은 약 83~96%를 나타내었다. 이러한 결과는 유방질환에서 감별진단의 전처리 단계로 자동진단의 가능성을 나타내며, 향후 제안된 알고리즘의 추가적인 연구와 다양한 임상증례에 대한 신뢰성과 재현성이 제공된다면 컴퓨터보조진단의 실용화기반을 마련할 수 있을 것이고, 다양한 초음파 영상에 대한 적용이 가능할 것으로 사료된다.

서해연안 토지이용 및 토지피복 변화탐지를 위한 KOMPSAT-2 영상의 활용 (Application of KOMSAT-2 Imageries for Change Detection of Land use and Land Cover in the West Coasts of the Korean Peninsula)

  • 선우우연;김다은;강석구;최민하
    • 대한원격탐사학회지
    • /
    • 제32권2호
    • /
    • pp.141-153
    • /
    • 2016
  • 토지이용 및 토지피복변화에 대한 신뢰성 높은 평가는 수로학 및 지리학적 연구에서 침식 및 퇴적, 해안 모니터링, 생태영향평가와 같은 다양한 실질적인 사안들을 발전시켰다. 원격탐사 이미지는 시간 변화에 따른 자연 및 토지변화를 살펴보는데 있어 뛰어난 잠재력을 지니고 있다. 따라서 최근에서는 환경 모니터링을 위해 고해상도의 원격탐사 영상 이미지를 활용한 보다 정확한 연구가 요구되고 있다. 본 논문에서는 갯벌보호지역이 위치한 한반도의 전라남도, 전라북도 일부지역의 토지이용 및 토지피복 변화에 대한 맵핑 및 변화탐지 방법을 실시하였다. 이를 위하여 2008년부터 2015년에 촬영된 KOMPSAT-2 위성의 다중분광 이미지를 사용하였다. 토지이용 및 토지피복변화 맵핑은 무감독 토지분류방법으로 분석하였으며, postclassification 변화탐지 방법으로 평가하였다. 전라북도와 전라남도의 연안지역에 대한 토지이이용 및 토지 피복변화에 대한 평가결과는 시간변화에 따라 큰 차이가 나타나지는 않았으나 각각 약 1.97%, 4.34% 정도의 변화를 보였다. 본 연구결과는 연구지역의 토지피복 변화 양상을 정량화 하였으며, 특히, 화소기반 분석을 통해 연안지역에 대한 KOMPSAT-2 다중분광 이미지의 효율적이고 경제적인 활용 가능성을 확인하였다. 이러한 토지이용 및 토지피복변화 정보는 연안환경 관리 및 정책결정을 위해서 환경 및 정책관리자들에게 유용할 것으로 기대된다.

고해상도 Landsat 8 위성자료기반의 지표면 온도 산출 (Retrieval of Land SurfaceTemperature based on High Resolution Landsat 8 Satellite Data)

  • 지준범;김부요;조일성;이규태;최영진
    • 대한원격탐사학회지
    • /
    • 제32권2호
    • /
    • pp.171-183
    • /
    • 2016
  • 2013년부터 2014년까지 관측된 Landsat 8 위성자료로부터 지표면 온도를 산출하였고 산출된 지표면 온도는 지상에서 관측된 지표면 온도를 이용하여 보정하였다. 지표면 온도지도는 Landsat 8로부터 산출된 지표면 온도를 지상에서 관측된 지표면 온도와의 선형 회귀식을 이용하여 계산되었다. 계절과 년에 대한 지표면 온도는 각각 계절과 년에 대하여 사례들을 평균하여 계산되었다. 지표면 온도는 도시의 공업 또는 상업지역에서 높은 온도가 나타나는 반면, 서울주변의 높은 고도의 산악과 해양, 강 등에서 낮은 지표면 온도가 나타났다. 위성에서 산출된 지표면 온도를 보정하기 위하여 서울을 포함한 수도권지역에서 관측되는 기상청 종관측소 3개 지점 (서울(지점번호: 108), 인천(지점번호: 119), 수원(지점번호: 112))의 지표면 관측 자료를 이용하여 선형회귀방법을 적용하였다. Landsat 8의 지표면 온도는 모든 자료에서 기울기가 0.78이었고 5개의 흐린날을 제외한 맑은 상태의 자료에서 0.88이었다. 그리고 초기 지표면온도에서 상관계수는 0.88이었고 평방근 오차 (Root Mean Sqare Error (RMSE))는 $5.33^{\circ}C$이었다. 지표면 온도 보정이후에는 상관계수는 0.98 그리고 RMSE는 $2.34^{\circ}C$이었으며 회귀식의 기울기는 0.95로 개선되었다. 계절 및 년 지표면 온도는 상업지역과 공업지역 그리고 도시와 주변지역을 잘 표현하였다. 결과적으로 지상에서 관측된 지표면 온도를 이용하여 위성에서 산출된 지표면온도를 보정하였을 때 실제 상태와 유사한 분포를 보였다.

유비쿼터스 스마트 홈을 위한 위치와 모션인식 기반의 실시간 휴먼 트랙커 (Real-Time Human Tracker Based Location and Motion Recognition for the Ubiquitous Smart Home)

  • 박세영;신동규;신동일
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (D)
    • /
    • pp.444-448
    • /
    • 2008
  • 유비쿼터스 스마트 홈 (ubiquitous smart home) 은 인간과 홈의 컨텍스트(context) 정보를 이용하여 인간에게 자동적인 홈 서비스 (Home service)를 제공해줄 수 있는 미래의 환경이다. 인간의 위치와 모션은 유비쿼터스 스마트 홀에서 굉장히 중요한 컨텍스트이다. 본 논문은 유비쿼터스 스마트 홀에서 인간의 위치와 모션을 예측할 수 있는 실시간 휴먼 트랙커 (tracker)를 연구하였다. 실시간 휴먼 트랙커를 위해 우리는 4개의 네트워크 카메라를 사용하였다. 본 논문에서는 실시간 휴먼 트랙커의 구조를 설명하고, 인간의 위치와 모션을 자동적으로 예측 및 판단하는 알고리즘을 제안하였다. 인간 위치를 위해서 3개의 배경이미지를 이용하였다 (이미지1 : 빈 방, 이미지2: 가구 및 가전, 이미지3: 이미지 2 와 거주자를 포함). 실시간 휴먼 트랙커는 3개의 이미지를 비교하여 각 이미지로부터 추출되는 특징 값을 결정하고, 이들 특징 값을 SVM (Support Vector Machine)을 이용하여 각각의 모션을 예측하였다. 3 개의 배경 이미지를 이용한 인간 위치 인식실험은 평균 0.037 초가 소요되었다. SVM을 이용한 모션 인식 요소에서, 우리는 각 동작에 대하여 1000번씩 측정했고, 모든 모션의 정확도 평균은 86.5% 의 정확도를 보였다.

  • PDF

스마트 홈을 위한 사용자 위치와 모션 인식 기반의 실시간 휴먼 트랙커 (Real-Time Human Tracker Based on Location and Motion Recognition of User for Smart Home)

  • 최종화;박세영;신동규;신동일
    • 정보처리학회논문지A
    • /
    • 제16A권3호
    • /
    • pp.209-216
    • /
    • 2009
  • 스마트 홈(smart home)은 인간과 홈의 컨텍스트(context) 정보를 이용하여 인간에게 자동적인 홈 서비스(Home service)를 제공해줄 수 있는 미래의 환경이다. 인간의 위치와 모션은 스마트 홈에서 굉장히 중요한 컨텍스트이다. 본 논문은 스마트 홈에서 인간의 위치와 모션을 예측할 수 있는 실시간 휴먼 트랙커(tracker)를 연구하였다. 실시간 휴먼 트랙커를 위해 4개의 네트워크 카메라를 사용하였다. 본 논문에서는 실시간 휴먼 트랙커의 구조를 설명하고, 인간의 위치와 모션을 자동적으로 예측 및 판단하는 알고리즘을 제안하였다. 인간 위치를 위해서 3개의 배경 이미지를 이용하였다(이미지1: 빈 방 이미지, 이미지2: 거주자가 제외 된 가구 및 가전 이미지, 이미지3: 전체 이미지). 실시간 휴먼 트랙커는 3개의 이미지를 비교하여 각 이미지로부터 추출되는 특징 값을 결정하고, 이들 특징 값을 SVM(Support Vector Machine)을 이용하여 각각의 모션을 예측하였다. 3개의 배경 이미지를 이용한 인간 위치 인식실험은 평균 0.037 초가 소요 되었다. SVM을 이용한 모션 인식 요소에서, 각 동작에 대하여 1000번씩 측정했고, 모든 모션의 정확도 평균은 86.5% 의 정확도를 보였다.