• Title/Summary/Keyword: pixel distance

Search Result 303, Processing Time 0.026 seconds

Barcode Region of Interest Extraction Method Using a Local Pixel Directions in a Multiple Barcode Region Image (다중 바코드 영역을 가지는 영상에서 지역적 픽셀 방향성을 이용한 바코드 관심 영역 추출 방법)

  • Cho, Hosang;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2121-2128
    • /
    • 2015
  • In this paper presents a method of extracting reliable and regions of interest (ROI) in barcode for the purpose of factory automation. backgrounds are separated based on directional components and the characteristics of detected patterns. post-processing is performed on candidate images with analysis of problems caused by blur, rotation and areas of high similarity. In addition, the resizing factor is used to achieve faster calculations through image resizing. The input images contained multiple product or barcode for application to diverse automation environments; a high extraction success rate is accomplished despite the maximum shooting distance of 80 cm. Simulations involving images with various shooting distances gave an ROI detection rate of 100% and a post-processing success rate of 99.3%.

THREE DIMENSIONAL RECONSTRUCTION OF TEETH USING X-RAY MICROTOMOGRAPHY (X-ray microtomography를 이용한 치아의 3차원 재구성)

  • Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.6
    • /
    • pp.485-490
    • /
    • 2003
  • Complete understanding of the exterior and interior structure of the tooth would be prerequisite to the successful clinical results, especially in the restorative and endodontic treatment. Although three-dimensional reconstruction method using x-ray microtomography could not be used in clinical cases, it may be the best way to reconstruct the morphologic characteristics of the tooth structure in detail without destructing the tooth itself. This study was done to three dimensionally reconstruct every teeth in the arch in order to increase the understanding about the endodontic treatment and to promote the effective restorative treatment by upgrading the knowledge of the tooth morphology. After placing tooth between the microfocus x-ray tube and the image intensifier to obtain two-dimensional images of each level. scanning was done under the condition of 80 keV, $100{\;}\mu\textrm{m}$, 16.8 magnification with the spot size of $8{\;}\mu\textrm{m}$. Cross-section pixel size of $16.28{\;}\mu\textrm{m}$ and 48.83 cross-section to cross-section distance were also used. From the results of this study, precise three dimensional reconstructed images of every teeth could be obtained. Furthermore, it was possible to see image that showed interested area only, for example. enamel portion only, pulp and dentin area without enamel structure, pulp only, combination image of enamel and pulp, etc. It was also possible to see transparent image without some part of tooth structure. This image might be used as a guide when restoring and preparing the full and partial crown by showing the positional and morphological relationship between the pulp and the outer tooth structure. Another profit may be related with the fact that it would promote the understanding of the interior structure by making observation of the auto-rotating image of AVI file from the various direction possible.

Mutual Information-based Circular Template Matching for Image Registration (영상등록을 위한 Mutual Information 기반의 원형 템플릿 정합)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.547-557
    • /
    • 2014
  • This paper presents a method for designing circular template used in similarity measurement for image registration. Circular template has translation and rotation invariant property, which results in correct matching of control points for image registration under the condition of translation and rotation between reference and sensed images. Circular template consisting of the pixels located on the multiple circumferences of the circles whose radii vary from zero to a certain distance, is converted to two-dimensional Discrete Polar Coordinate Matrix (DPCM), whose elements are the pixels of the circular template. For sensed image, the same type of circular template and DPCM are created by rotating the circular template repeatedly by a certain degree in the range between 0 and 360 degrees and then similarity is calculated using mutual information of the two DPCMs. The best match is determined when the mutual information for each rotation angle at each pixel in search area is maximum. The proposed algorithm was tested using KOMPSAT-2 images acquired at two different times and the results indicate high accurate matching performance under image rotation.

Resolution Estimation Technique in Gaze Tracking System for HCI (HCI를 위한 시선추적 시스템에서 분해능의 추정기법)

  • Kim, Ki-Bong;Choi, Hyun-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.20-27
    • /
    • 2021
  • Eye tracking is one of the NUI technologies, and it finds out where the user is gazing. This technology allows users to input text or control GUI, and further analyzes the user's gaze so that it can be applied to commercial advertisements. In the eye tracking system, the allowable range varies depending on the quality of the image and the degree of freedom of movement of the user. Therefore, there is a need for a method of estimating the accuracy of eye tracking in advance. The accuracy of eye tracking is greatly affected by how the eye tracking algorithm is implemented in addition to hardware variables. Accordingly, in this paper, we propose a method to estimate how many degrees of gaze changes when the pupil center moves by one pixel by estimating the maximum possible movement distance of the pupil center in the image.

A Study on Observation of Lunar Permanently Shadowed Regions Using GAN (GAN을 이용한 달의 영구 그림자 영역 관찰에 관한 연구)

  • Park, Sung-Wook;Kim, Jun-Yeong;Park, Jun;Lee, Han-Sung;Jung, Se-Hoon;Sim, Chun-Bo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.520-523
    • /
    • 2022
  • 일본 우주항공연구개발기구(Japan Aerospace Exploration Agency, JAXA)는 2007년부터 2017년까지 달 탐사선 셀레네(Selenological and Engineering Explorer, SelEnE)가 관측한 데이터를 수집하고, 연구했다. JAXA는 지구 상층 대기에 존재하는 산소가 자기장의 꼬리 부분에 실려 달로 이동한다는 사실을 발견했다. 하지만 이 연구는 아직 진행 중이며 달의 산화 과정 규명에 추가 연구가 필요하다. 본 논문에서는 생성적 적대 신경망(Generative Adversarial Networks, GAN)으로 달 분화구의 영구 그림자 영역을 제거하고, 물과 얼음을 발견하여 선행 연구의 완성도를 향상하고자 한다. 실험에 사용할 모델은 CIPS(Conditionally Independent Pixel Synthesis)다. CIPS는 실제 같은 영상을 고해상도로 합성한다. 합성할 데이터의 최적인 가중치 초기화 및 파라미터 갱신 방법, 활성 함수 조합은 실험을 통해 확인한다. 필요에 따라 앙상블 학습을 할 수도 있다. 성능평가는 FID(Frechet Inception Distance), 정밀도, 재현율을 사용한다. 제안한 방법은 진행 중인 연구의 시간과 비용을 절약하고, 인과관계를 더욱 명확히 밝히는 데 도움 될 수 있다고 사료된다.

Design and Implementation of Convenience System Based on IoT (IoT를 기반한 편의 시스템 설계 및 구현)

  • Ui-Do Kim;Seung-Jin Yu;Jae-Won Lee;Seok-Tae Cho;Jae-Wook Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.165-172
    • /
    • 2024
  • In this paper, we designed a smart home system that can be used intuitively and easily in everyday life, such as sending text messages to users, providing various information and scheduling using smart AI, and providing lighting and atmosphere suitable for the atmosphere in situations such as listening to music using neopixels, as well as using ESP32, RFID, and Google Cloude Console using raspberry pie. As a result of the experiment, it was confirmed that security characters were normally sent to users when RFID was recognized on ESP32 connected to Wi-Fi even if the power was reconnected, and smart AI using Neopixel lighting, Raspberry Pie, and voice recognition, which calculated frequency, also changed the recognition rate over distance, but it worked.

Prediction of Osteoporosis using Compositive Analysis of Trabecular Patterns on Proximal Femur (대퇴 근위부의 골소주 패턴에 대한 복합적인 분석을 통한 골다공증 예측 연구)

  • Lee, Ju-Hwan;Park, Sung-Yun;Jeong, Jae-Hoon;Kim, Sung-Min
    • The KIPS Transactions:PartB
    • /
    • v.19B no.2
    • /
    • pp.99-106
    • /
    • 2012
  • The purpose of this study was to determine the evaluation parameters' osteoporosis predictability in accordance with measuring regions by analyzing the correlations between bone mineral density and trabecular patterns derived from different measuring regions. Experimental subjects were a total of 40 female patients after menopause aged over 40 years, and were classified into 20 control and 20 osteoporotic groups according to the T-score. Bone mineral density was measured on femoral neck, trochanter and ward's triangle by DEXA(Dual Energy X-ray Absorptiometry). We designated ROI(Region of Interest) with $50{\times}50$ pixel size on each measuring regions, and extracted trabecular patterns by using existing image processing method. We also selected a total of eight evaluation parameters that are categorized into structural(mean gray level, area, perimeter, thickness and terminal distance), skeletonized parameters(number, length) and fractal dimension. As a result, it was observed that area, perimeter, thickness, terminal distance, number, length and fractal dimension reflected the bone mineral density with high statistical validity(p<0.003). We also confirmed that the evaluation parameters could predict the osteoporosis more efficiently.

Detection of Precise Crop Locations under Vinyl Mulch using Non-integral Moving Average Applied to Thermal Distribution

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-Seung;Lee, Dong-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.42 no.2
    • /
    • pp.117-125
    • /
    • 2017
  • Purpose: Damage to pulse crops by wild birds is a serious problem. The damage is to such an extent that the rate of damage during the period between seeding and cotyledon stages reaches 54.6% on an average. In this study, a crop-position detection method was developed wherein infrared (IR) sensors were used to determine the cotyledon position under a vinyl mulch. Methods: IR sensors that helped measure the temperature were used to locate the cotyledons below the vinyl mulch. A single IR sensor module was installed at three locations of the crops (peanut, red lettuce, and crown daisy) in the cotyledon stage. The representative thermal response of a $16{\times}4$ pixel area was detected using this sensor in the case where the distance from the target was 25 cm. A spatial image was applied to the two-dimensional temperature distribution using a non-integral moving-average method. The collected data were first processed by taking the moving average via interpolation to determine the frame where the variance was the lowest for a resolution unit of 1.02 cm. Results: The temperature distribution was plotted corresponding to a distance of 10 cm between the crops. A clear leaf pattern of the crop was visually confirmed. However, the temperature distribution after the normalization was unclear. The image conversion and frequency-conversion graphs were obtained based on the moving average by averaging the points corresponding to a frequency of 40 Hz for 8 pixels. The most optimized resolutions at locations 1, 2, and 3 were found on 3.4, 4.1, and 5.6 Pixels, respectively. Conclusions: In this study, to solve the problem of damage caused by birds to crops in the cotyledon stage after seeding, the vinyl mulch is punched after seeding. The crops in the cotyledon stage could be accurately located using the proposed method. By conducting the experiments using the single IR sensor and a sliding mechanical device with the help of a non-integral interpolation method, the crops in the cotyledon stage could be precisely located.

Development of an Automatic 3D Coregistration Technique of Brain PET and MR Images (뇌 PET과 MR 영상의 자동화된 3차원적 합성기법 개발)

  • Lee, Jae-Sung;Kwark, Cheol-Eun;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Park, Kwang-Suk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.5
    • /
    • pp.414-424
    • /
    • 1998
  • Purpose: Cross-modality coregistration of positron emission tomography (PET) and magnetic resonance imaging (MR) could enhance the clinical information. In this study we propose a refined technique to improve the robustness of registration, and to implement more realistic visualization of the coregistered images. Materials and Methods: Using the sinogram of PET emission scan, we extracted the robust head boundary and used boundary-enhanced PET to coregister PET with MR. The pixels having 10% of maximum pixel value were considered as the boundary of sinogram. Boundary pixel values were exchanged with maximum value of sinogram. One hundred eighty boundary points were extracted at intervals of about 2 degree using simple threshold method from each slice of MR images. Best affined transformation between the two point sets was performed using least square fitting which should minimize the sum of Euclidean distance between the point sets. We reduced calculation time using pre-defined distance map. Finally we developed an automatic coregistration program using this boundary detection and surface matching technique. We designed a new weighted normalization technique to display the coregistered PET and MR images simultaneously. Results: Using our newly developed method, robust extraction of head boundary was possible and spatial registration was successfully performed. Mean displacement error was less than 2.0 mm. In visualization of coregistered images using weighted normalization method, structures shown in MR image could be realistically represented. Conclusion: Our refined technique could practically enhance the performance of automated three dimensional coregistration.

  • PDF

Geometric Calibration of Cone-beam CT System for Image Guided Proton Therapy (영상유도 양성자치료를 위한 콘빔 CT 재구성 알고리즘: 기하학적 보정방법에 관한 연구)

  • Kim, Jin-Sung;Cho, Min-Kook;Cho, Young-Bin;Youn, Han-Bean;Kim, Ho-Kyung;Yoon, Myoung-Geun;Shin, Dong-Ho;Lee, Se-Byeung;Lee, Re-Na;Park, Sung-Yong;Cho, Kwan-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.209-218
    • /
    • 2008
  • According to improved radiation therapy technology such as IMRT and proton therapy, the accuracy of patient alignment system is more emphasized and IGRT is dominated research field in radiation oncology. We proposed to study the feasibility of cone-beam CT system using simple x-ray imaging systems for image guided proton therapy at National Cancer Center. 180 projection views ($2,304{\times}3,200$, 14 bit with 127 ${\mu}m$ pixel pitch) for the geometrical calibration phantom and humanoid phantoms (skull, abdomen) were acquired with $2^{\circ}$ step angle using x-ray imaging system of proton therapy gantry room ($360^{\circ}$ for 1 rotation). The geometrical calibration was performed for misalignments between the x-ray source and the flat-panel detector, such as distances and slanted angle using available algorithm. With the geometrically calibrated projection view, Feldkamp cone-beam algorithm using Ram-Lak filter was implemented for CBCT reconstruction images for skull and abdomen phantom. The distance from x-ray source to the gantry isocenter, the distance from the flat panel to the isocenter were calculated as 1,517.5 mm, 591.12 mm and the rotated angle of flat panel detector around x-ray beam axis was considered as $0.25^{\circ}$. It was observed that the blurring artifacts, originated from the rotation of the detector, in the reconstructed toomographs were significantly reduced after the geometrical calibration. The demonstrated CBCT images for the skull and abdomen phantoms are very promising. We performed the geometrical calibration of the large gantry rotation system with simple x-ray imaging devices for CBCT reconstruction. The CBCT system for proton therapy will be used as a main patient alignment system for image guided proton therapy.

  • PDF