• Title/Summary/Keyword: pixel differences

Search Result 101, Processing Time 0.024 seconds

An Image Merging Method for Two High Dynamic Range Images of Different Exposure (노출 시간이 다른 두 HDR 영상의 융합 기법)

  • Kim, Jin-Heon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.526-534
    • /
    • 2010
  • This paper describes an algorithm which merges two HDR pictures taken under different exposure time to display on the LDR devices such as LCD or CRT. The proposed method does not generate the radiance map, but directly merges using the weights computed from the input images. The weights are firstly produced on the pixel basis, and then blended with a Gaussian function. This process prevents some possible sparkle noises caused by radical change of the weights and contributes to smooth connection between 2 image informations. The chrominance informations of the images are merged on the weighted averaging scheme using the deviations of RGB average and their differences. The algorithm is characterized by the feature that it represents well the unsaturated area of 2 original images and the connection of the image information is smooth. The proposed method uses only 2 input images and automatically tunes the whole internal process according to them, thus autonomous operation is possible when it is included in HDR cameras which use double shuttering scheme or double sensor cells.

Image Quality Assessment by Measuring Blocking Artifacts (블록화 현상의 측정을 통한 영상의 화질평가)

  • Lee, Sang-Woo;Park, Sang-Ju
    • The KIPS Transactions:PartB
    • /
    • v.15B no.5
    • /
    • pp.383-390
    • /
    • 2008
  • Block based transform coding is most popular approach for image and video compression. However it suffers from severe quality degradation especially from blocking artifacts. The subjective quality degradation caused by such blocking artifacts in general does not agree well with an objecive quality measurement such as PSNR. Hence new quality evaluation technique is necessary. We propose a new image quality assessment method by measuring blocking artifacts for block based transform coded images. In order to characterize blocking artifacts, proposed method utilizes the facts that, blocking artifacts, when occur, have different pixel values along the block boundaries and such differences usually continuously span along the whole boundaries. This method does not require the original uncompressed image. It operates on single block boundary and quantifies the amount of blocking artifacts on it. Experiments on various compressed images various bitrates show that proposed quantitative measure of blocking artifacts matches well with the subjective quality of them judged by human visual system.

Design of H.264 Deblocking Filter for Low-Power Mobile Multimedia SoCs (저전력 휴대 멀티미디어 SoC를 위한 H.264 디블록킹 필터 설계)

  • Koo Jae-Il;Lee Seongsoo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.79-84
    • /
    • 2006
  • This paper proposed a novel H.264 deblocking filter for low-power mobile multimedia SoCs. In H.264 deblocking filter, filtering can be skipped on some pixels when pixel value differences satisfy some specific conditions. Furthermore, whole filtering can be skipped when quantization parameter is less than 16. Based on these features, power consumption can be significantly reduced by shutting down deblocking filter partially or as a whole. The proposed deblocking filter can shut down partial or whole blocks with simple control circuits. Common hardware performs both horizontal filtering and vertical filtering. It was implemented in silicon chip using $0.35{\mu}m$ standard cell library technology. The gate count is about 20,000 gates. The maximum operation frequency is 108MHz. The maximum throughput is 30 frame/s with CCIR601 image format.

A hardware architecture based on the NCC algorithm for fast disparity estimation in 3D shape measurement systems (고밀도 3D 형상 계측 시스템에서의 고속 시차 추정을 위한 NCC 알고리즘 기반 하드웨어 구조)

  • Bae, Kyeong-Ryeol;Kwon, Soon;Lee, Yong-Hwan;Lee, Jong-Hun;Moon, Byung-In
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.99-111
    • /
    • 2010
  • This paper proposes an efficient hardware architecture to estimate disparities between 2D images for generating 3D depth images in a stereo vision system. Stereo matching methods are classified into global and local methods. The local matching method uses the cost functions based on pixel windows such as SAD(sum of absolute difference), SSD(sum of squared difference) and NCC(normalized cross correlation). The NCC-based cost function is less susceptible to differences in noise and lighting condition between left and right images than the subtraction-based functions such as SAD and SSD, and for this reason, the NCC is preferred to the other functions. However, software-based implementations are not adequate for the NCC-based real-time stereo matching, due to its numerous complex operations. Therefore, we propose a fast pipelined hardware architecture suitable for real-time operations of the NCC function. By adopting a block-based box-filtering scheme to perform NCC operations in parallel, the proposed architecture improves processing speed compared with the previous researches. In this architecture, it takes almost the same number of cycles to process all the pixels, irrespective of the window size. Also, the simulation results show that its disparity estimation has low error rate.

Recovering Corrupted Motion Vectors using Discontinuity Features of an Image (영상의 불연속 특성을 이용한 손상된 움직임 벡터 복원 기법)

  • 손남례;이귀상
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.3
    • /
    • pp.298-304
    • /
    • 2004
  • In transmitting a compressed video bit-stream over Internet, a packet loss causes an error propagation in both spatial and temporal domain, which in turn leads to a severe degradation in image quality. In this paper, a new error concealment algorithm is proposed to repair damaged portions of the video frames in the receiver. Conventional BMA(Boundary Matching Algorithm) assumes that the pixels on the boundary of the missing block and its neighboring blocks are very similar, but has no consideration of edges t)r discontinuity across the boundary. In our approach, the edges are detected across the boundary of the lost or erroneous block. Once the edges are detected and the orientation of each edge is found, only the pixel difference along the expected edges across the boundary is measured instead of calculating differences between all adjacent pixels on the boundary. Therefore, the proposed approach needs very few computations and the experiment shows an improvement of the performance over the conventional BMA in terms of both subjective and objective quality of video sequences.

Change Vector Analysis : Change detection of flood area using LANDSAT TM Data (LANDSAT TM을 이용한 홍수지역의 변화탐지 : Change Vector Analysis 방법을 중심으로)

  • Yoon, Geun-Won;Yun, Young-Bo;Park, Jong-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.2 s.25
    • /
    • pp.47-52
    • /
    • 2003
  • Change detection and analysis is a powerful application of remote sensing, in that the spectral resolution of multi-band sensors can be used to advantage in monitoring both significant and subtle land cover changes over time. In this study, the LANDSAT TM data was used to detect the change areas affected by flood from a heavy rainfall. The study area is the Nakdong River located in the Korea peninsular. Among the several change detection techniques, change vector analysis(CVA), principle component analysis(PCA) and image difference approach are utilized in this paper. CVA uses any number of spectral bands from multi-date satellite data to produce change image that yield information of the magnitude and direction of differences pixel values. And accuracy assessment was carried out with a change image produced from three techniques. In result, CVA was found to be the most accurate for detecting areas affected by flood. CVA with the overall accuracy and Kappa coefficient of 97.27 percent and 94.45 percent, respectively.

  • PDF

Automatic Change Detection of MODIS NDVI using Artificial Neural Networks (신경망을 이용한 MODIS NDVI의 자동화 변화탐지 기법)

  • Jung, Myung-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.83-89
    • /
    • 2012
  • Natural Vegetation cover, which is very important earth resource, has been significantly altered by humans in some manner. Since this has currently resulted in a significant effect on global climate, various studies on vegetation environment including forest have been performed and the results are utilized in policy decision making. Remotely sensed data can detect, identify and map vegetation cover change based on the analysis of spectral characteristics and thus are vigorously utilized for monitoring vegetation resources. Among various vegetation indices extracted from spectral reponses of remotely sensed data, NDVI is the most popular index which provides a measure of how much photosynthetically active vegetation is present in the scene. In this study, for change detection in vegetation cover, a Multi-layer Perceptron Network (MLPN) as a nonparametric approach has been designed and applied to MODIS/Aqua vegetation indices 16-day L3 global 250m SIN Grid(v005) (MYD13Q1) data. The feature vector for change detection is constructed with the direct NDVI diffenrence at a pixel as well as the differences in some subset of NDVI series data. The research covered 5 years (2006-20110) over Korean peninsular.

Feature Extraction of Welds from Industrial Computed Radiography Using Image Analysis and Local Statistic Line-Clustering (산업용 CR 영상분석과 국부확률 선군집화에 의한 용접특징추출)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.103-110
    • /
    • 2008
  • A reliable extraction of welded area is the precedent task before the detection of weld defects in industrial radiography. This paper describes an attempt to detect and extract the welded features of steel tubes from the computed radiography(CR) images. The statistical properties are first analyzed on over 160 sample radiographic images which represent either weld or non-weld area to identify the differences between them. The analysis is then proceeded by pattern classification to determine the clustering parameters. These parameters are the width, the functional match, and continuity. The observed weld image is processed line by line to calculate these parameters for each flexible moving window in line image pixel set. The local statistic line-clustering method is used as the classifier to recognize each window data as weld or non-weld cluster. The sequential procedure is to track the edge lines between two distinct regions by iterative calculation of threshold, and it results in extracting the weld feature. Our methodology is concluded to be effective after experiment with CR weld images.

Recognition of a New Car Plate using Color Information and Error Back-propagation Neural Network Algorithms (컬러 정보와 오류역전파 신경망 알고리즘을 이용한 신차량 번호판 인식)

  • Lee, Jong-Hee;Kim, Jin-Whan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.471-476
    • /
    • 2010
  • In this paper, we propose an effective method that recognizes the vehicle license plate using RGB color information and back-propagation neural network algorithm. First, the image of the vehicle license plate is adjusted by the Mean of Blue values in the vehicle plate and two candidate areas of Red and Green region are classified by calculating the differences of pixel values and the final Green area is searched by back-propagation algorithm. Second, our method detects the area of the vehicle plate using the frequence of the horizontal and the vertical histogram. Finally, each of codes are detected by an edge detection algorithm and are recognized by error back-propagation algorithm. In order to evaluate the performance of our proposed extraction and recognition method, we have run experiments on a new car plates. Experimental results showed that the proposed license plate extraction is better than that of existing HSI information model and the overall recognition was effective.

A Real Time Flame and Smoke Detection Algorithm Based on Conditional Test in YCbCr Color Model and Adaptive Differential Image (YCbCr 컬러 모델에서의 조건 검사와 적응적 차영상을 이용한 화염 및 연기 검출 알고리즘)

  • Lee, Doo-Hee;Yoo, Jae-Wook;Lee, Kang-Hee;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.5
    • /
    • pp.57-65
    • /
    • 2010
  • In this paper, we propose a new real-time algorithm detecting the flame and smoke in digital CCTV images. Because the forest fire causes the enormous human life and damage of property, the early management according to the early sensing is very important. The proposed algorithm for monitoring forest fire is classified into the flame sensing and detection of smoke. The flame sensing algorithm detects a flame through the conditional test at YCbCr color model from the single frame. For the detection of smoke, firstly the background range is set by using differences between current picture and the average picture among the adjacent frames in the weighted value, and the pixels which get out of this range and have a gray-scale are detected in the smoke area. Because the proposed flame sensing algorithm is stronger than the existing algorithms in the change of the illuminance according to the quantity of sunshine, and the smoke detection algorithm senses the pixel of a gray-scale with the smoke considering the amount of change for unit time, the effective early forest fire detection is possible. The experimental results indicate that the proposed algorithm provides better performance than existing algorithms.