• Title/Summary/Keyword: pixel differences

Search Result 101, Processing Time 0.025 seconds

A Compression Method for the True Color Images Using the Similarities of Data (데이타의 유사성을 이용한 실제 색상 화상의 압축 기법)

  • Kim, Tai-Yun;Song, Gil-Yeong;Jo, Gwang-Mun;Choe, Chang-Won
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.3
    • /
    • pp.398-408
    • /
    • 1994
  • It is true color that is allocated 1 byte to three basic colors, red, green, and blue in order to represent a pixel of an image. It is a merit that almost all colors are representable by using the true color. However, it requires a lot of storages. An efficient image compression method is necessary. Most of the existing compression methods have not considered the characteristics of the true color images. Therefore, the efficient compression has been almost impossible. The differences of each pixel and its adjacent pixels in the true color images are few. Only a few bits in 3 bytes data which represent a pixel have different values. But the different bits are scattered in 3 bytes, so efficient compression results are not achieved. Therefore, in the study it is shown that the similarities of data are increased by relocating the data structures of true color images. And an efficient compression strategy which uses the similarities of data is proposed.

  • PDF

Gradient Estimation for Progressive Photon Mapping (점진적 광자 매핑을 위한 기울기 계산 기법)

  • Donghee Jeon;Jeongmin Gu;Bochang Moon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.141-147
    • /
    • 2024
  • Progressive photon mapping is a widely adopted rendering technique that conducts a kernel-density estimation on photons progressively generated from lights. Its hyperparameter, which controls the reduction rate of the density estimation, highly affects the quality of its rendering image due to the bias-variance tradeoff of pixel estimates in photon-mapped results. We can minimize the errors of rendered pixel estimates in progressive photon mapping by estimating the optimal parameters based on gradient-based optimization techniques. To this end, we derived the gradients of pixel estimates with respect to the parameters when performing progressive photon mapping and compared our estimated gradients with finite differences to verify estimated gradients. The gradient estimated in this paper can be applied in an online learning algorithm that simultaneously performs progressive photon mapping and parameter optimization in future work.

CO-REGISTRATION OF KOMPSAT IMAGERY AND DIGITAL MAP

  • Han, Dong-Yeob;Lee, Hyo-Seong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.11-13
    • /
    • 2008
  • This study proposes the method to use existing digital maps as one of the technologies to exclude individual differences that occur in the process of manually determining GCP for the geometric correction of KOMPSAT images and applying it to the images and to automate the generation of ortho-images. It is known that, in case high-resolution satellite images are corrected geometrically by using RPC, first order polynomials are generally applied as the correction formula in order to obtain good results. In this study, we matched the corresponding objects between 1:25,000 digital map and a KOMPSAT image to obtain the coefficients of the zero order polynomial and showed the differences in the pixel locations obtained through the matching. We performed proximity corrections using the Boolean operation between the point data of the surface linear objects and the point data of the edge objects of the image. The surface linear objects are road, water, building from topographic map.

  • PDF

Evaluation of alveolar bone grafting in unilateral cleft lip and palate patients using a computer-aided diagnosis system

  • Sutthiprapaporn, Pipop;Tanimoto, Keiji;Nakamoto, Takashi;Kongsomboon, Supaporn;Limmonthol, Saowaluck;Pisek, Poonsak;Keinprasit, Chutimaporn
    • Imaging Science in Dentistry
    • /
    • v.42 no.4
    • /
    • pp.225-229
    • /
    • 2012
  • Purpose: This study aimed to evaluate the trabecular bone changes after alveolar bone grafting in unilateral cleft lip and palate (UCLP) patients using a computer-aided diagnosis (CAD) system. Materials and Methods: The occlusal radiographs taken from 50 UCLP patients were surveyed retrospectively. The images were categorized as: 50 images in group 0 (before bone grafting), 33 images in group 1 (one month after bone grafting), 24 images in group 2 (2-4 months after bone grafting), 15 images in group 3 (5-7 months after bone grafting), and 21 images in group 4 (8 or more months after bone grafting). Each image was grouped as either "non-cleft side" or "cleft side". The CAD system was used five times for each side to calculate the pixel area based on the mathematical morphology. Significant differences were found using a Wilcoxon signed ranks test or paired samples t test. Results: The pixel area showed a significant difference between the "non-cleft side" and "cleft side" in group 0 ($404.27{\pm}103.72/117.73{\pm}92.25$; p=0.00), group 1 ($434.29{\pm}86.70/388.31{\pm}109.51$; p=0.01), and group 4 ($430.98{\pm}98.11/366.71{\pm}154.59$; p=0.02). No significant differences were found in group 2 ($423.57{\pm}98.12/383.47{\pm}135.88$; p=0.06) or group 3 ($433.02{\pm}116.07/384.16{\pm}146.55$; p=0.19). Conclusion: Based on the design of this study, alveolar bone grafting was similar to normal bone within 2-7 months postoperatively.

Comparison of digitized radiographic alveolar features with age (연령 변화에 따른 치조골의 디지탈 방사선학적 특성비교)

  • Lee Keon Il
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 1997
  • The purpose of the present study was to use digital profile image features and digital image analysis of fixed-dimension bone regions, extracted from standardized periapical radiographs of the maxilla, to determine whether differences exist in alveolar bone of younger women(mean age: 59.23±7.34 years) and just menopaused women(mean age: 59.23±7.34). Periapical films were used from two groups of 20 randomly selected women. None of the subjects had a remarkable medical history. To simplify protocol, we chose one interproximal bone area between the maxillary right canine and lateral incisor for study. Ech film was digitized into a 1312 x 1024 pixel x 8 bit depth matrix by means of a Nikon 35 mm film scanner(LS-35lOAF, Japan) with fixed gain and internal dark current correction to maintain constant illumination. The scanner was interfaced to a Macintosh LC III computer(Apple Computer, Charlotte, N.C.). Area and profile orientation were selected with a NIMH Image 1.37(NIH Research Services Branch, Bethesda, Md.). Histogram features were extracted from each profile and area. The results of this study indicate that mean pixel intensities didn't differ significantly between two groups and there was a high correlarion-coefficient between digitized radiographic profile features and area features.

  • PDF

Integer Programming Models for the Design of Two-Dimensional Holographic Storage Modulation Code (2차원 홀로그래픽 변조부호 설계를 위한 정수계획법 모형)

  • Park, Taehyung;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.459-464
    • /
    • 2013
  • In this paper, we introduce a modulation code design problem where best selection of two-dimensional codewords are determined to reduce two-dimensional (2D) intersymbol interference (ISI) and interpage interference (IPI). Codeword selection problem is formulated as a quadratic integer programming model that minimizes intra- and inter-symbol differences subject to uniform symbol usage and minimal Hamming distance violations. Second integer programming model detects the occurrence of isolated pixel pattern in the selected codewords. The proposed models are applied to 4-level and 2-level 6/8 codes.

Hyperspectral Fluorescence Imaging for Mouse Skin Tumor Detection

  • Kong, Seong G.;Martin, Matthew E.;Vo-Dinh, Tuan
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.770-776
    • /
    • 2006
  • This paper presents a hyperspectral imaging technique based on laser-induced fluorescence for non-invasive detection of tumorous tissue on mouse skin. Hyperspectral imaging sensors collect image data in a number of narrow, adjacent spectral bands. Such high-resolution measurement of spectral information reveals contiguous emission spectra at each image pixel useful for the characterization of constituent materials. The hyperspectral image data used in this study are fluorescence images of mouse skin consisting of 21 spectral bands in the visible spectrum of the wavelengths ranging from 440 nm to 640 nm. Fluorescence signal is measured with the use of laser excitation at 337 nm. An acousto-optic tunable filter (AOTF) is used to capture images at 10 nm intervals. All spectral band images are spatially registered with the reference band image at 490 nm to obtain exact pixel correspondences by compensating the spatial offsets caused by the refraction differences in AOTF at different wavelengths during the image capture procedure. The unique fluorescence spectral signatures demonstrate a good separation to differentiate malignant tumors from normal tissues for rapid detection of skin cancers without biopsy.

  • PDF

An Image Hiding Scheme by Linking Pixels in the Circular Way

  • Chan, Chi-Shiang;Tsai, Yuan-Yu;Liu, Chao-Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1718-1734
    • /
    • 2012
  • The proposed method in this paper is derived from Mielikainen's hiding method. However, there exist some significant differences between two methods. In Mielikainen's method, pixels are partitioned into pairs and a LSB matching function is applied to two pixels for hiding. On the contrary, the proposed method partitions pixels into groups with three pixels in each group. The bits of pixels in each group are linked by using an exclusive OR (XOR) operator in a circular way. If the number of different values between the calculated XOR values and the secret bits is smaller than or equal to 2 in a group, the proposed method can guarantee that at most one pixel is needed to be modified by adding/subtracting its value to/from one, and three secret bits can be embedded to three pixels. Through theoretical analysis, the amount of the embedded secret data in the proposed method is larger than those in other methods under the same amount of pixel modifications. Taking real images in our experiments, the quality of stego-images in the proposed method is higher than those in other methods.

Seam-line Determination in Image Mosaicking using Adaptive Cost Transform and Dynamic Programming (동적계획법과 적응 비용 변환을 이용한 영상 모자이크의 seam-line 결정)

  • Chon, Jae-Choon;Suh, Yong-Cheol;Kim, Hyong-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.2
    • /
    • pp.16-28
    • /
    • 2004
  • A seam-line determination algorithm is proposed to determine image border-line in mosaicing using the transformation of gray value differences and dynamic programming. Since visually good border-line is the one along which pixel differences are as small as possible, it can be determined in association with an optimal path finding algorithm. A well-known effective optimal path finding algorithm is the Dynamic Programming (DP). Direct application of the dynamic programming to the seam-line determination causes the distance effect, in which seam-line is affected by its length as well as the gray value difference. In this paper, an adaptive cost transform algorithm with which the distance effect is suppressed is proposed in order to utilize the dynamic programming on the transformed pixel difference space. Also, a figure of merit which is the summation of fixed number of the biggest pixel difference on the seam-line (SFBPD) is suggested as an evaluation measure of seamlines. The performance of the proposed algorithm has been tested in both quantitively and visually on various kinds of images.

  • PDF

Factors affecting modulation transfer function measurements in cone-beam computed tomographic images

  • Choi, Jin-Woo
    • Imaging Science in Dentistry
    • /
    • v.49 no.2
    • /
    • pp.131-137
    • /
    • 2019
  • Purpose: This study was designed to investigate the effects of voxel size, the oversampling technique, and the direction and area of measurement on modulation transfer function (MTF) values to identify the optimal method of MTF measurement. Materials and Methods: Images of the wire inserts of the SedentexCT IQ phantom were acquired, and MTF values were calculated under different conditions(voxel size of 0.1, 0.2, and 0.3 mm; 5 oversampling techniques; simulated pixel location errors; and different directions and areas of measurement). The differences in the MTF values across various conditions were evaluated. Results: The MTF 10 values showed smaller standard deviations than the MTF 50 values. Stable and accurate MTF values were obtained in the 0.1-mm voxel images. In the 0.3-mm voxel images, oversampling techniques of 11 lines or more did not show significant differences in MTF values depending on the presence of simulated location errors. MTF 10 values showed significant differences according to the direction and area of the measurement. Conclusion: To measure more accurate and stable MTF values, it is better to measure MTF 10 values in small-voxel images. In large-voxel images, the proper oversampling technique is required. MTF values from the radial and tangential directions may be different, and MTF values vary depending on the measured area.