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Abstract 
 

The proposed method in this paper is derived from Mielikainen’s hiding method. However, 
there exist some significant differences between two methods. In Mielikainen’s method, pixels 
are partitioned into pairs and a LSB matching function is applied to two pixels for hiding. On 
the contrary, the proposed method partitions pixels into groups with three pixels in each group. 
The bits of pixels in each group are linked by using an exclusive OR (XOR) operator in a 
circular way. If the number of different values between the calculated XOR values and the 
secret bits is smaller than or equal to 2 in a group, the proposed method can guarantee that at 
most one pixel is needed to be modified by adding/subtracting its value to/from one, and three 
secret bits can be embedded to three pixels. Through theoretical analysis, the amount of the 
embedded secret data in the proposed method is larger than those in other methods under the 
same amount of pixel modifications. Taking real images in our experiments, the quality of 
stego-images in the proposed method is higher than those in other methods. 
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1. Introduction 

Digital Steganography is a technique that embeds secret data into meaningful multimedia 
data, such as videos and images. The hiding techniques can be classified three domains 
roughly according to the types of images that are used to carrier secret data. They are 
frequency-based image hiding, VQ-based image hiding and pixel-based image hiding. 
Frequency-based image hiding and VQ-based image hiding embed secret data to AC 
coefficients and VQ indices, respectively. On the contrary, pixel-based image hiding directly 
embeds secret data into pixels. 

Generally speaking, pixel-based image hiding has the largest hiding capacity among three 
domains. When talking about methods in this domain, the least-significant-bit (LSB) 
substitution method is the most straightforward. The method replaces the least-significant bits 
of cover pixels with secret data directly. Although LSB substitution method is the simplest 
way to hide secret data into digital images, it also degrades the quality of digital images most. 

In order to alleviate the degradation, Wang et al. [9] proposed their method by transforming 
the values of secret bits into other values. Wang et al. also proposed the way to find the 
mapping relations that could help us transform the values of secret bits to other values. After 
transforming, the transformed values become closer to the bits of the host pixel that are used to 
embed secret data. Therefore, host pixels will not be degraded too much after embedding. 
Wang et al. proposed their method to find the approximately optimal mapping relations by 
using a genetic algorithm. In 2003, Chang et al. [2] used the dynamic programming strategy to 
find the optimal mapping relations. The results shown in Chang et al.’s method reveal that 
both the computation time and the quality of stego-images are better than those of Wang et 
al.’s method. Then, Thien and Lin [7] proposed their image-hiding method by using a modulus 
function to further reduce the degradation of the image quality after embedding. 

Although all above-mentioned methods have high embedding capacity with good image 
quality, the secret data may be detected [3][4]. In 2006, Mielikainen proposed his method that 
used LSB Matching Function to do image hiding [6]. ielikainen’s method partitions cover 
pixels into pixel pairs. Two secret bits are embedded to a pixel pair. The first secret bit is 
embedded in the LSB of the first pixel. And, the second secret bit is the result of LSB 
Matching Function which takes two pixels as the parameters. To make the extracted data equal 
to secret data, Mielikainen’s method only needs to modify at most one pixel for each pixel pair 
by adding/subtracting the pixel value to/from one. Owing to this property, the Mielikainen’s 
method can obtain the best results among above-mentioned methods under the condition that 
the embedding capacity is 1 bit per pixel. 

Although there are some methods that can modify fewer pixels than Mielikainen’s method 
can do, their embedding capacity is not as large as Mielikainen’s method. For example, 
Westfeld [8] implemented the Matrix Coding to reduce the amount of modified pixels. In spite 
of fewer modified pixels of Westfeld’s method, the embedding capacity is only three-sevenths 
of the total amount of the cover pixels. Furthermore, Zhang et al. [11] proposed their 
“Hamming+1” Scheme to reduce the amount of modified pixels. However, the embedding 
capacity is still lower than Mielikainen’s method. Having high embedding capacity and 
satisfied amount of modified pixels makes Mielikainen’s method superior to other methods. 

Owing to the advantage described above, many papers do their further researches based on 
Mielikainen’s method. For example, Chan’s method [1] replaces LSB Matching Function with 
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Exclusive OR (XOR) Function to embed secret data. The main property of Chan’s method is 
that his method dose not partition pixels into pixel pairs but uses XOR Function to link all 
pixel bits. If the different values between the calculated values of LSB Matching Function and 
the secret bits occur across pairs, Mielikainen’s method must modify two pixels when 
embedding. On the contrary, Chan’s method only needs to modify one pixel. After that, in 
2011, Lin was inspired from Mielikainen’s method to propose his method [5] which partitions 
pixels into groups with three pixels in each group. Differences between three pixels are used to 
hide secret data. 

In order to further reduce the amount of modified pixels, we propose an image hiding 
method which is also derived from Mielikainen’s method. In our method, pixels are 
partitioned into groups with three pixels in each group. The bits of pixels in a group are linked 
by using XOR Function in a circular way. If the amount of different values between the 
calculated XOR values and the secret bits is smaller than or equal to 2 in a group, our method 
can guarantee that at most one pixel is needed to be modified, and three secret bits can be 
embedded to three pixels. According to the experimental results, the amount of the embedded 
secret data in the proposed method is larger than those in other methods under the same 
amount of pixel modifications. Moreover, the image quality of stego-images produced by the 
proposed method is better than those produced by other methods. 

The rest of this paper is organized as follows. Mielikainen’s method is described in Section 
2. Then, the concept of the proposed method is introduced in Section 3.1. And, the details of 
the proposed method are presented in Section 3.2. After that, Section 4 demonstrates the 
experimental results. Finally, some conclusions are made in Section 5. 

2. Related Work 
In this section, Mielikainen’s method [6] is introduced first. The method partitions cover 
pixels into pixel pairs. Two secret bits are embedded to a pixel pair to form stego-pixels. The 
way to embed two secret bits into a pixel pair by using Mielikainen’s method is described as 
follows. First of all, assume that a cover pixel pair, a stego-pixel pair and two secret bits are (y1, 
y2), (ŷ1, ŷ2) and (s1, s2), respectively. The final purpose of Mielikainen’s method is to embed the 
first secret bit s1 to the least-significant bit (LSB) of the first cover pixel y1. As for the second 
bit s2, it is related to the function called LSB Matching Function. The result of LSB Matching 
Function, which takes two stego-pixels ŷ1 and ŷ2 as parameters, should be the value of the 
second bit s2. LSB Matching Function is defined as follows: 
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The function LSB(z) represents the least-significant bit of pixel z. Two parameters x1 and x2 are 
two input pixels. 

More precisely, Mielikainen’s method modifies y1 to ŷ1 and y2 to ŷ2 such that the LSB(ŷ1) is s1 
and the result of F(ŷ1, ŷ2) is s2. LSB Matching Function has the property that F(y1-1, y2) is not 
equal to F(y 1+1, y2) for all possible y1 and y2. This means we can make F(ŷ1, y2) equal to s2 
through adjusting the value y1 to ŷ1 by adding/subtracting its value to/from one. Moreover, the 
value of the least-significant bit of (y1-1) or (y1+1) is also changed. Therefore, if LSB(y1) is not 
equal to s1 and F(y1, y2) is not equal to s2, adjusting the value y1 to ŷ1 by adding/subtracting its 
value to/from one can make LSB(ŷ1) equal to s1 and F(ŷ1, y2) equal to s2, simultaneously. On the 
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other hand, if LSB(y1) is not equal to s1 but F(y1, y2) is equal to s2, adjusting the value y1 to ŷ1 by 
replacing the least-significant bit of y1 with its complement can make LSB(ŷ1) equal to s1 but 
F(ŷ1, y2) still retainable. Finally, if LSB(y1) is equal to s1 but F(y1, y2) is not equal to s2, adjusting 
the value from y2 to ŷ2 by replacing the least-significant bit of y2 with its complement can make 
F(y1, ŷ2) equal to s2 but LSB(y1) still retainable. 

Mielikainen introduced his embedding procedures in the way of pseudo code in [6]. To 
make them clear, Chan [1] drew Mielikainen’s embedding procedures by using a flow chart as 
shown in Fig. 1. According to the procedures in Fig. 1, it can be seen that at most one cover 
pixel is needed to be modified by adding/subtracting its value to/from one and two secret bits 
are embedded to two cover pixels. 

 

 
Fig. 1. Mielikainen’s procedures 

An example is given in Fig. 2. Assume that the pixel pair (y1, y2) is (4, 11), and then the 
calculated values of LSB(y1) and F(y1, y2) are 0 and 1, respectively. It can be seen that F(y1-1, y2) 
is not equal to F(y1+1, y2), and LSB(ŷ1) becomes 1 where ŷ1 comes from adding/subtracting the 
value of y1 to/from one. Therefore, if the two secret bits are (1, 0) or (1, 1), adjusting y1 by 
subtracting its value from one or adding its value to one can achieve our goal. On the other 
hand, if two secret bits (s1, s2) are (0, 0), it can be seen that LSB(y1) is equal to s1 but F(y1, y2) is 
not equal to s2. Under this kind of situation, y2 is adjusted to ŷ2 by replacing the least-significant 
bit of y2 with its complement, and therefore ŷ2 becomes 10. 

The above example shows the advantage of the Mielikainen’s method comparing with the 
LSB substitution method. In all cases, at most only one cover pixel is needed to be modified by 
adding/subtracting its value to/from one, and two secret bits are embedded to two cover pixels. 
Although Mielikainen’s method has reduced the amount of modified pixels when embedding, 
they can be further reduced by using the proposed method described in the next section. 
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Fig. 2. An example of Mielikainen’s method 

3. The Proposed Method 
In this section, the proposed method is introduced. In Subsection 3.1, the concept of the 
proposed method is introduced. After that, the proposed method is presented in Subsection 3.2. 
Finally, a short discussion is described in Subsection 3.3. 

3.1 The Concept of the Proposed Method 
In this subsection, the concept of the proposed method is introduced. First of all, it is easy to 
induce that ë û( )2/)( 1yLSB represents the value of the second least-significant bit of the pixel y1. 
Moreover, ë û( )2/)1( 1 -yLSB  and ë û( )2/)1( 1 +yLSB  are always different for all possible pixel value 
y 1. An example is shown in Fig. 3. As we can see that the values of the second least-significant 
bits of (y1-1) and (y1+1) are different. Therefore, ë û( )2/)1( 1 -yLSB  and ë û( )2/)1( 1 +yLSB  are 
always different. Another example is shown in Fig. 3(b) .  
 

 
Fig. 3. The values of the second least-significant bits 
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According to the observation above, Mielikainen’s method can be simulated by linking the 
second least-significant bit of y1 to the least-significant bit of y2 using an exclusive OR 
operator. The Exclusive OR Formula (XF) [1] can be written as follows: 
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Again, the function LSB(z) represents the value of the least-significant bit of pixel z. And, 

two parameters x1 and x2 are two input pixels. The operator ⊕ represents an exclusive OR 
operator. 

According to the Formula (2), the value of XF(x1, x2) can be changed through modifying the 
second least-significant bit of x1 or the least-significant bit of x2. In Fig. 4, the same example in 
Fig. 2 is used to demonstrate the way to perform Formula (2). Assume the pixel pair (y1, y2) is 
(4, 11), and then the calculated values of LSB(y1) and XF(y1, y2) are 0 and 1, respectively. It can 
be seen that XF(y1-1, y2) is not equal to XF(y1+1, y2), and the values of LSB(y1-1) and LSB(y1+1) 
are all changed. Therefore, if two secret bits are (1, 0), adjusting y1 to y1-1 can make LSB(y1-1) 
equal to 1 and XF(y1-1, y2) equal to 0. If two secret bits are (1, 1), adjusting y1 to y1+1 can make 
LSB(y1+1) equal to 1 and XF(y1+1, y2) equal to 1.  

 

 
Fig. 4. The example of using the Exclusive OR Formula 

The most important point of this mechanism is that once the produced bits LSB(y1) and XF(y1, 
y2) are not the same as secret bits, at most one pixel is needed to be modified, and two secret 
bits can be embedded to two pixels. It is trivial that the advantage comes from the condition 
that both two calculated XF values are different to the secret bits. It means we can get a great 
benefit from the condition.  

In order to amplify this property, in this paper, the exclusive OR operator is applied on three 
cover pixels in the circular way. Then, two continuous positions with different values between 
the produced bits and the secret bits can become the same by just adding/subtracting one pixel 
value to/from one. More precisely, if the calculated exclusive OR values and the secret bits are 
different at the first and second positions, only the pixel at the first position is needed to 
modify, and the calculated exclusive OR values will become the same as the secret bits. 
Similarly, if the calculated exclusive OR values and the secret bits are different at the second 
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and third positions, only the pixel at the second position is needed to modify, and the 
calculated exclusive OR values will become the same as the secret bits. Although the first and 
third positions are not continuous, once the calculated exclusive OR values and the secret bits 
are different at these two positions, it still only needs to modify the pixel at the third position, 
and the calculated exclusive OR values will become the same as the secret bits. The reason is 
that three pixels are already linked in the circular way so that these two positions are treated as 
two continuous positions.  

3.2 The Embedding and Extracting Procedures 
In this subsection, the proposed method is described. The main difference between the 
proposed method and Mielikainen’s method is that the proposed method partitions pixels into 
pixel groups with three pixels in each group. Three secret bits will be embedded to each pixel 
group. Assume a cover pixel group, a stego-pixel group and a three-bit secret are (y1, y2, y3), (ŷ1, 
ŷ2, ŷ3) and (s1, s2, s3), respectively. The Circular Exclusive OR Formula (CXF) is written as 
follow: 
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The symbol xi means the pixel value at the i-th pixel of three pixels in a pixel group, and the 

variable i belongs to 0, 1 and 2. Using Formula (3), the CXF values of cover pixels can be 
calculated. Comparing the calculated CXF values with secret bits, the positions with different 
values can be located. The following procedures try to modify (y1, y2, y3) to (ŷ1, ŷ2, ŷ3) such that 
three secret bits (s1, s2, s3) can be embedded to (ŷ1, ŷ2, ŷ3). 

To make it clear, all possible cases are classified to three cases according to the amount of 
different values between the calculated CXF values and the secret bits. These cases are Case A, 
Case B and Case C. If the amount of different values in a pixel group is only one, it belongs to 
Case A. Otherwise; it belongs to Case B or Case C when the amount of different values is two 
or three, respectively.  

For the first case, Case A, there is only one position with different value between the 
calculated CXF values and the secret bits. Assume that the result of CXF(yi) is not equal to si, 
where i is 0, 1 or 2. Then, the least-significant bit of yi is replaced with its complement. The 
way to modify the pixel can also be written as below:  
 
    .)()(

 
ˆ iiii yLSByLSByy +-=                                                                                            (4) 

 
The symbol )( iyLSB  means the complement of the least-significant bit of yi. Note that 
replacing the least-significant bit of pixel yi with its complement does not affect the results of 
other pixels’ CXF values. 

Examples of Case A are demonstrated in Fig. 5. Assume the values of cover pixels (y1, y2, y3) 
are (4, 11, 5). Three secret bits are (1, 1, 0), (0, 0, 0) and (0, 1, 1), respectively. The positions of 
different values between (CXF(y1), CXF(y2), CXF(y3)) and three secret bits are at the first, the 
second and the third positions, respectively. According to Formula (3), the results of (CXF(y1), 
CXF(y2), CXF(y3)) are (0, 1, 0), respectively. For the first case in Fig. 5(a), its three secret bits 
(s1, s2, s3) are (1, 1, 0). Because only CXF(y1) is not equal to s1, the pixel value y1 should be 
modified according to Formula (4). It can be seen that we only need to replace the 
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least-significant bit of y1 with its complement, that is 1, and three secret bits are embedded to 
three cover pixels. The same procedure is performed on Fig. 5(b) and Fig. 5(c) and three secret 
bits (0, 0, 0) and (0, 1, 1) can be embedded to three cover pixels, respectively.  

 
 

 
(a)  

 
(b)  

 
(c) 

 

Fig. 5. Examples of the Case A 

For the second case, it is more complex so that Case B is further divided into three cases, 
called Case B-I, Case B-II and Case B-III. The procedures of modifying (y1, y2, y3) to (ŷ1, ŷ2, ŷ3) 
are drawn in Fig. 6. By observing these procedures, each will check the condition whether 

ë û)2/)1(( -iyLSB  is equal to ë û)2/( iyLSB . If ë û)2/)1(( -iyLSB  is equal to ë û)2/( iyLSB , it means yi -1 
will not modify the second least-significant bit of yi. Note that there are only two different 
values between the calculated CXF values and the secret bits in Case B. If we want to make 
CXF(yi) equal to si and CXF(y(i+1) mod 3) equal to s(i+1) mod 3, either adding yi to one or subtracting 
yi from one will achieve our goal. The reason is that one of two operators can change the bit 
values of two least-significant bits of yi at the same time. Since the least-significant bit of yi has 
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been changed, the result of CXF(yi) is also changed. As for the result of CXF(y(i+1) mod 3), it 
relates to the second least-significant bits of yi according to Formula (3). Once the second 
least-significant bits of yi is changed, the result of CXF(y(i+1) mod 3) will also be changed. 
Therefore, checking the condition is used to see whether the second least-significant bit of yi is 
changed or not after subtracting its value from 1. If it is not changed, ŷi is set as yi+1. Otherwise, 
ŷi is set as yi-1. It can be seen that in our proposed method, only one cover pixel is needed to be 
modified for Case B by adding/subtracting its value to/from one, and three secret bits can be 
embedded to three cover pixels. This property is the most important part of the proposed 
method. 
 

 
Fig. 6. The procedures of the proposed method for Case B 

Examples of Case B are demonstrated in Fig. 7. Assume the values of cover pixels (y1, y2, y3) 
are (4, 11, 5). Three secret bits are (1, 0, 0), (0, 0, 1) and (1, 1, 1), respectively. Those three 
secret bits are related to Case B-I, Case B-II and Case B-III, respectively. According to 
Formula (3), the results of (CXF(y1), CXF(y2), CXF(y3)) are (0, 1, 0), respectively. For the first 
case in Fig. 6(a), its three secret bits (s1, s2, s3) are (1, 0, 0). Because CXF(y1) is not equal to s1 
and CXF(y2) is not equal to s2, the pixel values y2 and y3 are retained without being changed 
while the pixel value y1 should be modified. In the first step, we check whether 

ë û)2/)1(( 1 -yLSB  is equal to ë û)2/( 1yLSB . It is trivial that ë û)2/)14(( -LSB is not equal to 
ë û)2/4(LSB . That means the second least-significant bit of y1 has been changed after 

subtracting y1 from 1. Moreover, the CXF(y2) value has also been changed, because CXF(y2) 
value is related to the second least-significant bit of y1. It can be seen that we only need to 
subtract y1 from 1, and three secret bits are embedded to three cover pixels. The ways to 
process Case B-II and Case B-III are the same except that the modified pixels are y2 and y3, 
respectively. The examples of those two cases are shown in Fig. 6(b) and Fig. 6(c), respectively.  
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(a) Case B-I 

 
(b) Case B-II 

 
(c) Case B-III 

 
(d) Case C 

Fig. 7. Examples of the Case B and Case C 

For the third case, Case C, there are three positions with different values between the 
calculated CXF values and the secret bits. In this case, the least-significant bit of y3 is modified 
by using Formula (4). Meanwhile, y1 should also be modified such that the values of CXF(ŷ1) 
and CXF(ŷ2) are all changed. This situation is the same as Case B-I and we use the same 
procedures to check and modify y1. The whole procedures for Case C are drawn in Fig. 8. An 
example for Case C is shown in Fig. 7(d) and the secret bits in this case are (1, 0, 1).  
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Fig. 8. The procedures of the proposed method for Case C 

For a pixel with value 255 or 0, the pixel can not be added to one or subtracted from one. This 
situation may also occur in Mielikainen’s method. If this condition occurs in Case B, the 
proposed method uses Formula (4) to embed secret bits. For example, we assume the value 
pixel at the first position in Fig 6(a) is 0 or 255 instead of 4. It is trivial that the value 0 or 255 
can not be subtracted from one or added to one. Therefore, both the least-significant bits of the 
first and second pixels are modified by using Formula (4). Then, three secret bits can be 
embedded to three cover pixels as shown in Fig. 9(a) and Fig. 9(b). On the other hand, if this 
condition occurs in Case C, the pixel with 255 or 0 will be modified by using Formula (4). 
Then, rest part will be the same as Case B. It will go through the same procedure of Case B to 
embed three secret bits as shown in Fig. 9(c) and Fig. 9(d). 
 

 
(a)  

 
(b)  
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(c)  

 
(d)  

Fig. 9. Special cases for pixels with value 255 or 0 

3.3 Discussion 
The advantage of the proposed method is that if the number of different values between the 
calculated XOR values and the secret bits is smaller than or equal to 2, our method can 
guarantee that at most one pixel is needed to be modified by adding/subtracting their value 
to/from one and three secret bits can be embedded to three cover pixels. To achieve this 
purpose, the current pixel should be related to other pixels. That is why the proposed method 
uses Formula (3) to link current pixel to other pixels. Under the above-mentioned linking way, 
any two different values between the calculated CXF values and the secret bits become 
continuous. Then, it can be guaranteed that at most one pixel is needed to be modified under 
Case B.  

If we partition cover pixels into pixel groups with “four” pixels instead of “three” pixels, the 
above advantage will be eliminated. That is, it may modify more than one pixel to embed 
secret data when the number of the different values between the calculated CXF values and the 
secret bits is two. For example, assume that the CXF values of four cover pixels and their 
corresponding secret bits are different at first and third positions. Because different values 
between the calculated CXF values and the secret bits are not continuous, at least two cover 
pixels are needed to be modified so as to achieve hiding. 

4. Experimental Results 
The experimental results are demonstrated in this section. In the first experiment, we do some 
theoretical analysis by using embedding efficiency [10]. Embedding efficiency is used to 
calculate the amount of embedded secret bits under the fixed quantity of pixel modifications in 
average. The definition of embedding efficiency is the average amount of secret bits carried by 
one embedding change in the cover data. The higher the value of embedding efficiency is, the 
lower the embedding change of cover pixels is. The way to calculate embedding efficiency can 
be written as below:  
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The symbol femb denotes the embedding algorithm and the variable n represents the total 

number of possible secret data that can be embedded by using embedding algorithm femb. 
Moreover, the symbol #femb(i) means the amount of the embedding change when embedding 
i-th secret data by using embedding algorithm femb. If the embedding algorithm femb modifies 
cover pixels by only adding/subtracting their values to/from one, the quantity of the 
embedding change for those modified pixel is one. Then, the total amount of embedding 
change is also equal to the number of modified pixels. That is the reason why the total amounts 
of modified pixels are listed in Table 1.  

Taking the proposed method as an example, if the number of cover pixels is three, three 
secret bits can be embedded to them. Then, all possible secret data are from (000)2 to (111)2. 
The total amount of possible secret data n is 8. When embedding all possible secret data to 
three cover pixels one by one, the total amount of embedded secret bits is 8×log28. Moreover, 
the total amount of modified pixels is 8 which can be found in Table 1. In fact, the total number 
of modified pixels dose not relate to the values of cover pixels. It means expect for the pixel 
values 0 and 255, the total amounts of modified pixels are still 8 for all possible three cover 
pixels. According to the definition of embedding efficiency in [10], the embedding efficiency 
of the proposed method is (8×log28)/8 = 3. It means that expect for the pixel values 0 and 255, 
in average the proposed method can embed 3 secret bits by modifying one pixel through 
adding/subtracting its value to/from one. On the contrary, the embedding efficiency of 
Mielikainen’s method is 2.667. 

Table 1. The total amounts of the modified pixels and the values of embedding efficiency 

 
Mielikainen’s method Lin’s Method [5] The Proposed Method 

Number of 

modified pixels 

Embedding 

Efficiency 
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modified pixels 

Embedding 

Efficiency 
Number of 

modified pixels 
Embedding 

Efficiency 

N
um

be
r o

f c
ov

er
 p

ix
el

s 

3 -- --  10 2.853 8 3 

4 24 2.667 -- --  -- --  
6 144 2.667  180 2.853 128 3 
8 768 2.667  -- --  -- --  
9 -- --  2430 2.853 1536 3 

10 3840 2.667  -- --  -- --  
12 18432 2.667  29160 2.853 16384 3 
14 86016 2.667  -- --  -- --  
15 -- --  328050 2.853 163840 3 

  
In Table 1, it also shows the results of Lin’s method [5].  Lin’s method is proposed in 2011 to 
do secret hiding. The reason why we take Lin’s method to compare with our proposed method 
is that Lin’s method is also inspired from Mielikainen’s method. His method also takes 3 cover 
pixels as a group to hide secret data. However, the embedding and extracting procedures of 
Lin’s method and our method are totally different. According to the results in Table 1, it can be 
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seen that the amounts of the modified pixels in the proposed method are always lower than 
those in Mielikainen’s and Lin’s method. Therefore, the values of embedding efficiency of 
proposed method are always higher than those of Mielikainen’s and Lin’s method.  

In the second experiment, real images were used to perform the Mielikainen’s method, 
Lin’s method and the proposed method. The cover images were Lena and Plane with size 
512×512 pixels as shown in Fig. 10. Three secret images were Tiffany, Boat and Toys with 
size 256×128 pixels as shown in Fig. 11. 
 

 
(a) Lena 

 
(b) Plane 

Fig. 10. Two 512´512-pixel cover images 

 

 
(a) Tiffany 

 
(b) Boat 

 
(c) Toys 

Fig. 11. Three 256´128-pixel secret images 

The experimental results are shown in Table 2 and Table 3. The amount of total modified 
pixels under the embedding capacity of 1 bit per pixel (bpp) is shown in Table 2. According to 
Table 2, Lin’s method [5] can reduce about 6000 pixel modifications comparing with 
Mielikainen’s method [6]. In the aspect of the proposed method, it can be seen that our method 
can further reduce about 5000 pixel modifications comparing with Lin’s method [5].  

The values in Table 3 are the peak signal to noise ratio (PSNR) values and hiding cost by 
using Mielikainen’s method, Lin’s method and the proposed method, respectively. The PSNR 
values are used to estimate the quality of the stego-images. The PSNR values can be calculated 
according to the following formula:  
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    dB
MSE

PSNR
2)255(log10´=                                                                                         (6) 

 
Here MSE means the mean square error, and is derived from the square errors of all pixels.  
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The symbols α(I, J) and β(I, J) represent the pixel values at the position (I, J) in the 
stego-image and the original image, respectively. The symbols w and h represent the pixel 
numbers for the width and the height of the image, respectively. The hiding cost represents the 
quantity of pixel modifications in average to embed a secret bit. The hiding cost can be 
calculated by dividing amount of the modified pixels by amount of secret bits.   

According to experiment results in Table 3, the PSNR values in the proposed method are 
always higher than those in Mielikainen’s and Lin’s method. This means the stego images 
produced by the proposed method have better quality than those produced by Mielikainen’s 
and Lin’s method. Moreover, the hiding costs in the proposed method are always lower than 
those in Mielikainen’s and Lin’s method. This implies that the proposed method can modify 
fewer pixels to embed the same quality of secret bits.  All in all, the values in Table 3 show that 
the proposed method is superior to Mielikainen’s method [6] and Lin’s method [5].  

Table 2. The amount of the modified  pixels (the embedding capacity: 1 bit per pixel(bpp)) 

 Cover Images 

Lena Plane 

Mielikainen’s 

Method [6] 

Lin’s Method 

[5] 
Our Method 

Mielikainen’s 

Method [6] 

Lin’s Method 

[5] 

Our 

Method 

Se
cr

et
 Im

ag
es

 Tiffany 98341 92304 87234 98287 92017 87450 

Boat 98162 92040 87387 98338 92199 87325 

Toys 97962 92322 87225 98383 92069 87240 

Table 3. Comparisons of different methods 
 Cover Images 

Lena Plane 

Mielikainen’s 

Method [6] 
Lin’s Method [5] Our Method 

Mielikainen’s 

Method [6] 

Lin’s Method 

[5] 
Our Method 

PSNR Hiding 
Cost PSNR Hiding 

Cost PSNR 
Hiding 
Cost 
(HC) 

PSNR HC PSNR HC PSNR HC 

 

Tiffany 52.39 0.375 52.66 0.352 52.91 0.333 52.39 0.375 52.69 0.35 52.90 0.33 
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Boat 52.40 0.374 52.68 0.351 52.90 0.333 52.39 0.375 52.67 0.35 52.91 0.33 

Toys 52.41 0.374 52.66 0.352 52.91 0.333 52.39 0.375 52.68 0.35 52.91 0.33 

5. Conclusion 
In 2006, Mielikainen proposed his method to do image hiding. Mielikainen’s method 
partitions cover pixels into pixel pairs. Two secret bits are embedded to a pixel pair. In 
Mielikainen’s method, at most one pixel is needed to be modified for each pixel pair by 
adding/subtracting the pixel value to/from one. In this paper, the proposed method which was 
derived from Mielikainen’s method partitions pixels into pixel groups with three pixels in each 
group. The bits of pixels in a group are linked by using XOR Function in a circular way. This 
way, any two positions with different values between the calculated XOR values and the secret 
bits become continuous, and at most one pixel is needed to be modified by adding/subtracting 
it value to/from one. According to theoretical analysis, the amount of the embedded secret data 
in the proposed method is larger than those in other methods under the same amount of pixel 
modifications. Our experimental results also demonstrate that the quality of stego-images in 
the proposed method is higher than those in other methods. 
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