• Title/Summary/Keyword: pivoting

Search Result 62, Processing Time 0.028 seconds

Selection of Energy Conservation Measures for Building Energy Retrofit: a Comparison between Quasi-steady State and Dynamic Simulations in the Hands of Users

  • Kim, Sean Hay
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.5-12
    • /
    • 2016
  • Purpose: Quasi-steady state simulations have played a pivoting role to expand the user group of simulation to design engineers and architects in Korea. Initially they are introduced in the market as a building energy performance rating tool. In domestic practice, however, quasi-steady state simulations seem to be regarded as a de facto simulation only available for energy retrofit. Selection of ECMs and economic feasibility analysis are being decided through these tools, which implies that running these tools has become a norm step of the Investment-grade Audit. Method: This study aims at identifying issues and problems with the current practice via test cases, analyzing the reasons and opportunities, and then eventually suggesting proper uses of quasi-steady state and dynamic simulations. Result: The functionality of quasi-steady state simulations is more optimized to the rating. If they are to used for energy retrofits, their off-the-shelf functions also need to be expanded for customization and detailed reports. Yet their roles may be limited only to the go/no go decision; because their algorithms are still weak at precisely estimating energy and load savings that are required for making investment decisions compared to detailed simulations.

Variable Geometry Mixed Flow Turbine for Turbochargers: An Experimental Study

  • Rajoo, Srithar;Martinez-Botas, Ricardo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.155-168
    • /
    • 2008
  • This paper investigates a variable geometry (VG) mixed flow turbine with a novel, purposely designed pivoting nozzle vane ring. The nozzle vane ring was matched to the 3-dimensional aspect of the mixed flow rotor leading edge with lean stacking. It was found that for a nozzle vane ring in a volute, the vane surface pressure is highly affected by the flow in the volute rather than the adjacent vane surface interactions, especially at closer nozzle positions. The performance of the VG mixed flow turbine has been evaluated experimentally in steady and unsteady flow conditions. The VG mixed flow turbine shows higher peak efficiency and swallowing capacity at various vane angle settings compared to an equivalent nozzleless turbine. Comparison with an equivalent straight vane arrangement shows a higher swallowing capacity but similar efficiencies. The VG turbine unsteady performance was found to deviate substantially from the quasi-steady assumption compared to a nozzleless turbine. This is more evident in the higher vane angle settings (smaller nozzle passage), where there are high possibility of choking during a pulse cycle. The presented steady and unsteady results are expected to be beneficial in the design of variable geometry turbochargers, especially the ones with a mixed flow turbine.

An Efficient Pricing Strategy(PAPANET) for Solving Network Flow Problems (네트워크 문제 해결에 있어서 효과적인 pricing 방법에 관한 연구)

  • Kang, Moonsig
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.2
    • /
    • pp.153-171
    • /
    • 2002
  • In this paper, we present an efficient pricing strategy, the pivot and probe Algorithm for Network Flow Problems(PAPANET), specifically for solving capacitated, linear network flow problem (NPs). The PAPANET begins with an initial relaxed network problem(RNP), consisting of all the nodes and initial candidate arcs(possibly a few least cost arcs form the original problem and a set of all the artificial and slack arcs). After an initial solution to the RNP is derived by pivoting, the PROBE procedure identifies a set of most violated arcs from the noncandidate arcs that are not considered to be in the current RNP, and adds them to the RNP. The procedure also discards a set of least favorable, zero flow, nonbasic arcs from the RNP. The new RNP is solved to optimality and the procedure continues until all of the dual constraints of the noncandidate arcs are satisfied by the dual solution to the RNP. The PAPANET effectively reduces the problem size, time per pivot, and solution CPU time by eliminating noncandidate arcs. Computational tests on randomly generated problems indicate that PAPANET achieves and average savings of 50-80% of the solution CPU time of that of a comparable standard network simplex implementation.

Kinematic Comparative Analysis of Short Turns between Skilled and Unskilled Alpine Skiers

  • Jo, Hyun Dai
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.4
    • /
    • pp.219-226
    • /
    • 2019
  • Objective: The purpose of this study is to provide a better understanding of short turn mechanism by describing short turns after kinematic analysis and provide skiers and winter sports instructors with data through which they are able to analyze right postures for turns in skiing in a systematic, rational and scientific manner. Method: For this, a mean difference of kinematic variables (ski-hip angle, ski-shoulder twist angle, pole checking angle, the center of gravity (CG) displacement, trunk forward lean angle) was verified against a total of 12 skiers (skilled and unskilled, 6 persons each), regarding motions from the up-start to down-end points for short turns. Results: There was no difference in a ski-hip twist angle. The ski-shoulder twist angle was large at the up-start point while a pole-checking angle was high at the down-end point in skilled skiers. Concerning the horizontal displacement of CG, skilled skiers were positioned on the right side at the upstart point. No significant difference was observed in the trunk forward lean angle. Conclusion: According to the ski-shoulder twist angle and CG horizontal displacement results, the upper body should be kept leant toward the pole. In addition, big turns should be made via edging and angulation. During pole checking, the hand holding the pole should be thrown and released toward a vector direction of the forearm.

Hessenberg Method for Small Signal Stability Analysis of Large Power Systems (대규모 전력계통의 미소신호 안정도 해석을 위한 Hessenberg법)

  • Nam, Hae-Gon;Song, Seong-Geun;Sim, Gwan-Sik;Mun, Chae-Ju;Kim, Dong-Jun;Mun, Yeong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.168-176
    • /
    • 2000
  • This paper presents the Hessenberg method, a new sparsity-based small signal stability analysis program for large interconnected power systems. The Hessenberg method as well as the Arnoldi method computes the partial eigen-solution of large systems. However, the Hessenberg method with pivoting is numerically very stable comparable to the Householder method and thus re-orthogonalization of the krylov vectors is not required. The fractional transformation with a complex shift is used to compute the modes around the shift point. If only the dominant electromechanical oscillation modes are of concern, the modes can be computed fast with the shift point determined by Fourier transforming the time simulation results for transient stability analysis, if available. The program has been successfully tested on the New England 10-machine 39-bus system and Korea Electric Power Co. (KEPCO) system in the year of 2000, which is comprised of 791-bus, 1575-branch, and 215-machines. The method is so efficient that CPU time for computing five eigenvalues of the KEPCO system is 3.4 sec by a PC with 400 MHz Pentium IIprocessor.

  • PDF

An Experimental Study on the Propulsive Characteristics of Sculls (선미노(船尾櫓)의 추력발생기구(推力發生機構) 규명(糾明)을 위한 실험적(實驗的) 연구(硏究))

  • H.,Kim;B.K.,Lee;C.K.,Rheem
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.13-24
    • /
    • 1989
  • The geometrical characteristics of sculls which are in use for propulsion of Korean traditional row boats were briefly surveyed. A typical dimension of the scull was selected and prototype for test was prepared. Angular displacements and the force components at handle and pivoting point were measured when the scull was operated in moored condition by skilled fisherman. Time histories and trajectories of motion were analyzed with the force generated at the scull blade. It was found out that the thrust of the scull was generated mainly by reaction force. The direction of improvement for better rowing motion could be also suggested. Continued study on this topic in a self-propulsion condition will provide us another interesting informations and prepare a possibility of application in evaluating rowing motion of oar.

  • PDF

Kinematic Comparative Analysis of Long Turns between Experienced and Inexperienced Ski Instructors

  • Jo, Hyun Dai
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • Objective: The purpose of this study is to provide a better understanding of long turn mechanism by describing long turns after kinematic analysis and provide skiers and winter sports instructors with data through which they are able to analyze right postures for turns in skiing in a systematic, rational and scientific manner. Method: For this, a mean difference of kinematic variables (the center of gravity (CG) displacement of distance, trajectory, velocity, angle) was verified against a total of 12 skiers (skilled and unskilled, 6 persons each), regarding motions from the up-start to down-end points for long turns. Results: First, concerning the horizontal displacement of CG during a turn in skiing, skilled skiers were positioned on the right side at the upstart and edge-change points at a long turn. There was no difference in anteroposterior and vertical displacements. Second, in terms of CG-trajectory differences, skilled skiers revealed a significant difference during a long turn. Third, regarding skiing velocity, skilled skiers were fast at the edge-change and maximum inclination points in long turns. Fourth, there was no difference in a hip joint in terms of a lower limb joint angle. In a knee joint, a large angle was found at the up-start point among skilled skiers when they made a long turn. Conclusion: In overall, when skilled and unskilled skiers were compared, to make a good turn, it is required to turn according to the radius of turn by reducing weight, concerning the CG displacement. Regarding the CG-trajectory differences, the edge angle should be adjusted via proper inclination angulation. In addition, a skier should be more leaned toward the inside of a turn when they make a long turn. In terms of skiing velocity, it is needed to reduce friction on snow through the edging and pivoting of the radius or turn according to curvature and controlling ski pressure. Regarding a lower limb joint angle, it is important to make an up move by increasing ankle and knee angles instead of keeping the upper body straight during an up motion.

A Study on Manufacture of Integrated Composite Wing with High Aspect Ratio (고 세장비 일체형 복합재 날개 제작 연구)

  • Joo, Young-Sik;Jun, Oo-Chul;Byun, Kwan-Hwa;Cho, Chang-Min;Han, Jin-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.127-133
    • /
    • 2013
  • In this paper, the study for the manufacture of the integrated composite wing is performed. The wing has a pivoting structure and high aspect ratio to increase lift drag ratio. The wing is designed with carbon fiber composite because the wing needs to be light and have sufficient strength and stiffness to satisfy structural design requirements. The number of structural members is decreased by part integration to reduce manufacturing cost and the wing is manufactured with the integrated molding process by an autoclave. The material properties are identified by the coupon tests and the structural strength and stiffness are verified through the component tests.

An Improved Reconstruction Algorithm of Convolutional Codes Based on Channel Error Rate Estimation (채널 오류율 추정에 기반을 둔 길쌈부호의 개선된 재구성 알고리즘)

  • Seong, Jinwoo;Chung, Habong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.951-958
    • /
    • 2017
  • In an attack context, the adversary wants to retrieve the message from the intercepted noisy bit stream without any prior knowledge of the channel codes used. The process of finding out the code parameters such as code length, dimension, and generator, for this purpose, is called the blind recognition of channel codes or the reconstruction of channel codes. In this paper, we suggest an improved algorithm of the blind recovery of rate k/n convolutional encoders in a noisy environment. The suggested algorithm improves the existing algorithm by Marazin, et. al. by evaluating the threshold value through the estimation of the channel error probability of the BSC. By applying the soft decision method by Shaojing, et. al., we considerably enhance the success rate of the channel reconstruction.

Development of Master-Slave Type Tele-Operation Control Robotic System for Arrhythmia Ablation (부정맥 시술을 위한 마스터-슬레이브 원격제어·로봇 시스템 개발)

  • Moon, Youngjin;Park, Sang Hoon;Hu, Zhenkai;Choi, Jaesoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.585-589
    • /
    • 2016
  • Recently, the robotic assist system for cardiovascular intervention gets continuously growing interest. The robotic cardiovascular intervention systems are largely two folds, systems for cardiac ablation procedure assist and systems for vascular intervention assist. For the systems, the clinician controls the catheter inserted through blood vessel to the heart via a master console or master manipulator. Most of the current master manipulators have structure of joystick-like pivoting 2 degree of freedom (DOF) handle in the core, which is used in parallel with other sliding switches and input devices. It however is desirable to have customized and optimized design manipulator that can provide clinician with intuitive control of the catheter motion fully utilizing the advantage of the use of robotic structure. A 6 DOF kinematic mechanism that can capture the motion control intention of the clinician in translational 3 DOF and rotational 3 DOF is proposed in this paper. Also, a master-slave motion relationship specially designed for the cardiac catheter manipulation motion is proposed and implemented in an experimental prototype. Design revision for implementation of more efficient motion and experiment in combination with an experimental slave robot system for catheter manipulation are underway.