REEEMNBEE
YA I Yo
2002% 6H 153

LﬂE%EL 'E—X-ﬂ 5H7é°ﬂ 103 Al

N
N
o

AF

An Efficient Pricing Strategy(PAPANET)
for Solving Network Flow Problems®

Moonsig Kang®

2 Abstract m—

In this paper, we present an efficient pricing strategy, the pivot and probe Algorithm for Network Flow Problems
(PAPANET), specifically for solving capacitated, linear network flow problem (NPS). The PAPANET begins with an initial
relaxed network problem (RNP), consisting of all the nodes and initial candidate arcs (possibly a few least cost arcs
form the original problem and a set of all the artificial and slack arcs). After an initial solution to the RNP is derived
by pivoting, the PROBE procedure identifies a set of most violated arcs from the noncandidate arcs that are not
considered to be in the current RNP, and adds them to the RNP. The procedure also discards a set of least favorable,
zero flow, nonbasic arcs from the RNP. The new RNP is solved to optimality and the procedure continues until all
of the dual constraints of the noncandidate arcs are satisfied by the dual solution to the RNP. The PAPANET effectively
reduces the problem size, time per pivot, and solution CPU time by eliminating noncandidate arcs. Computational tests
on randomly generated problems indicate that PAPANET achieves an average savings of 50-80% of the solution CPU
time of that of a comparable standard network simplex implementation.

Keyword : Network Flow Problems, Algorithms

2342 1 2001H 1228 219 =RAAMEEY 20024 6% 5
The present research has been conducted by the Bisa Research Grant of Keimyung University.
*% Assistant Professor, Dept. of Management Information Systems, Keimyung University

*rH-

154

1. Introduction

The network flow model describes an impor-
tant class of optimization problems that has marny

applications in practice, e.g., production planning

and scheduling, economic planning, communica-

tion systems, inventory systems, logistics sys-
tems, traffic systems, and many other areas that
require a shipment of a commodity from supply
points to demand points (see [2]). Because of the
numerous important applications, much theo-
retical and algorithmic development research has
been conducted on network flows [1, 3-6, 10,
15-17,25, 26]. In this paper, we present a new
method for improving the algorithmic efficiency
of network flow algorithms. It is based on the
Pivot And Probe Algorithm (PAPA) for solving
linear programming(LP) problems developed by
Sethi and Thompson {19, 20] and Sethi [18].
When using a simplex-based network optimi-
zation procedure, typically a large portion of arcs
never enter the basis and at optimum, obviously,
most of the arcs are nonbasic with zero flow
{lower bound). Our tests on randomly generated
capacitated network flow problems (NP) indicate
that about 60~80% of all arcs are nonbasic with
zero flow at the optimum, and only about 30-50%
of all arcs are utilized once or more in the solution
process (this varies with the problem character-
istics). Similar results are described by Sethi [18]
and Sethi and Thompson [20] in their Pivot And
Probe Algorithm for solving the pure linear
programming problem, a generalization of the
pure network flow problem. We define a can-
didate arc as one that has a potential to enter the
basis at least once. A noncandidate arc is one that
never enters the basis, thus remaining nonbasic
with zero flow throughout the optimization pro-

»
Sl

1>

cess and not affecting the optimurn. Clearly, the
solution of an NP can be obtained without the

noncandidate arcs. It would reduce the problem

size and be an effective way to improve compu-—
tational efficiency.

PAPANET, the Pivot And Probe Algorithm for
Network Flow Problems, starts with all the nodes
and initial candidate arcs (a few least cost arcs
from the original problem and all the artificial and
slack arcs). A standard network simplex method
is used to derive an initial primal solution and
its corresponding dual solution to the relaxed
network problem (RNP). Using the dual solution,
the PROBE step identifies the most violated arcs
from the noncandidate arcs that are not con-
sidered in the current relaxation. The most vio-
lated arcs become candidate and are added to the
RNP. The PROBE step also discards the least
favorable nonbasic zero flow arcs from the RNP.
The new RNP is solved again and the process
continues until all candidate arcs price unfavo~
rably and all of the noncandidate arcs are satis~
fied by the dual solution to the new RNP.

We expect that the implementation of PAPA-
NET would require significantly fewer arcs and
fewer pivots, less time per pivot and less overall
solution CPU time than is required by the
comparable, standard network simplex imple-
mentation from which it is derived.

The paper is organized as follows: a brief
description of the Pivot And Probe Algorithm for
linear programming is presented in Section 2. In
Section 3, we discuss the Pivot Ard Probe Algo-
rithm for Network Flow Problems (PAPANET).
Section 4 contains the implementation details of
the PAPANET and introduces two coded ver-
sions of the new algorithm. Computational resul-
ts are presented and analyzed in Section 5.

Section 6 is our summary and conclusions. We
assume that the reader is familiar with the basic
definitions, methods, and implementation of linear
programming (e.g., see [7, 22]) and network pro-
gramming (e.g., see [7-9, 11]).

2. The Pivot And Probe Algo-
rithm for Linear Program-
ming

The Pivot And Probe Algorithm (PAPA) for
linear programming (LP) was developed by Sethi
[18], and later by Sethi and Thompson [19, 20].
Thompson and Sethi [24] further applied the
PAPA to solve constrained generalized transpor-
tation problems, and Sethi, Thompson and Hung
{21] introduced its specialization to the LP dual.
The conceptual foundation of PAPA was to
reduce the active problem size by maintaining
only a small number of constraints or variables
that have the potential to be included in an
optimal solution to an LP. The original idea
involved determining which constraints to in-
clude and which to omit. Sethi and Thompson
[19] defined a candidate constraint to be one that
has a potential pivot element to enter the basis
in at least one pivot step. Similarly, a noncan-
didate constraint is defined as one that never
enters the basis during the course of solving an
LP. Retaining only small number of constraints
{primal) or variables (dual) reduces the active
problem size, and reduces pricing and pivoting
effort.

Consider a primal linear program (PLP) that

may be defined as:

maxz = cx, (N
s.t.Ax < b, (2)

VIEY = 74)8 QloIA AFAQl pricing Wel g ¢ 155

x =0, (3)

where A is an mxn matrix, b is an m vector, and
¢ and x are n vectors. Primal PAPA stars with
a relaxed linear program (RLP) consisting of all
initial candidate constraints. An initial candidate
constraint is defined as one that contains a pivot
element if any of the favorable variables (z; - ¢;
> () is selected to enter the basis by the standard
simplex algorithm. Geometrically, the initial can-
didate constraints consist of the collection of
constraints that have an intercepting point on
some coordinate axis that is closest to the origin.
To enforce the finiteness of each RNP, a regul-
arization constraint, ex < M, where M is a large
number and e = (1, 1, -+-, 1), is added to the RLP.
Once an optimal solution, x ¥, to the RLP is found,
primal PAPA probes the noncandidate constrain-
ts (not considered in the current relaxation) to
find the most violated one (or a set of several).
The probe step identifies the piercing points (if
any) of the line segment between any feasible
point of the original LP (i.e., x =0) and x*, with
violated noncandidate constraints. Noncandidate
constraints are said to be violated if they are not
satisfied by the current RLP solution, ie., ax™
> bi. One the piercing points for the noncandidate
constraints are identified, a set of constraints,
called most violated constraints, containing pier-
cing points closest to the feasible point, are added
to the RLP. Also, it is possible to drop constraints
that are loose in the current RLP solution in an
analogous manner. The new RLP is solved to
optimality by the dual simplex method. The most
piercing point found by any probe is feasible to
the original LP, and can thus be used as a feasible
point by later probes. This procedure is repeated
until an optimal solution to RLP is satisfied by

156

all the noncandidate constraints.

To clarify the algorithm, consider the LP max-
imization problem with 7 constraints and 2 vari-
ables shown graphically in [Figure 11.

Constraints 1 and 2 are initially candidate to
enter RLP and two standard simplex pivots ob-
tain point A as an optimum. From point A,
probing to the origin, 0, identifies constraint 3 as
the most violated constraint and point B as the
most piercing point (note that point B is feasible).
After adding constraint 3 to RLP, point C is found
to be an optimum to the new RLP. From point
C, probing to the origin selects constraint 4 and
probing to point B selects constraint 5 to be
candidate constraints. Constraints 4 and 5 are ad-
ded to the RLP and point E is found to be an
optimal solution to the RLP. Since point E satis-

fies all noncandidate constraints, it is an optimum

to the original LP.

The implementation of the Pivot And Probe
Algorithm (PAPA) for linear programming (LP)
on varying sizes ranging from 50 X 70 <0 300 x 310
indicated that savings of 20~80% of the solution
CPU time can be achieved [20]. PAPA required
80% of the solution CPU time of the standard
simplex method when m =50 but less than 20%
when m = 300, implying that the PAPA is more
effective when the problem size increases.

The main reason for the computational savings
are the average size of RLP. The average size
of the RLP starts at .33 for m=50 and drops
down to .1 when m=300. It implies that the
PAPA is less effective as the density decreases
because the average size of RLP increases.
Actually, Sethi and Thompson [20] showed that
the PAPA method becomes somewhat less

Objective

[Figure 1] Example Problem

WEY A A4 4 glolA &334l pricing ol > oA 157

effective, apparently because the average size of
RLP increases, as the density decreases. They
also showed that the PAPA is less effective when
the number of negative constraints increases,
because of an increase in the average size of the
RLP.

3. The Pivot and Probe Algc-
rithm for Network Flow Pr
oblems (PAPANET)

3.1 Algorithm Development

The capacitated, linear, minimum cost network

flow problemn (NP) may be expressed as :

Min Dic;xy, (i,§) € A, (4)
S-t-ZXiJ_ZX;‘i =rj,

]]
G,7, G, A, ieN, 6))
0<x;<by (,i)eA. (6)

The complementary slackness conditions

corresponding to the NP may be stated as :

u;—u; < ¢y for all(i,j) € Awithx;=0, (7)
u;—u; < Cij_fOI' all(l,]) € A with X = bij, (8)
u;—uw < ¢y, for all(i,j) € A with0 (x5 < by, 9

where A denotes the set of arcs, N denotes the
set of nodes, r; is the requirement of node i (po-
sitive for a supply node, negative for a demand
node, zero for a transshipment node), c; is the
per unit cost coefficient of arc (i, j), x; is the flow
of arc (i, j), by is the upper bound on flow or
capacity of arc (i, j) and ui and w are node
potentials (dual variables). We assume that the
lower bound on the flow of each arc is zero.
Otherwise, a simple transformation to NP is re-

quired. Furthermore, because of the special fini

teness property of the capacitated network flow
problem, a regularization constraint is redundant
(if by = oo, generally a large finite value is used).

We next describe the application of the Pivot
and Probe Algorithm concepts to the dual to the
NP. Arcs are probed to determine if they should
be included in a relaxed primal NP. PAPANET
begins with an initial relaxed NP (RNP) consi-
sting of the entire node set, a set of all the
artificial and slack arcs, and few least cost arcs.
An initial solution is derived by applying the
standard network simplex method (alternatively,
an advanced start could be used first). When each
RNP has been solved to optimality, PAPANET
PROBEs to determine a set of new, potential
variables to enter the RNP from the noncandidate
arcs (not in the current RNP). If the optimal
solution to the RNP is feasible to the original
problem, it is an optimal solution to the original
problem and the method stops. Otherwise, in
addition to identifying new arcs to enter the RNP,
the PROBE can also release the least favorable
nonbasic zero flow arcs from the RNP. In any
iteration, let C be the index set of candidate arcs
that form the current RNP ; R be the index set
of noncandidate arcs; w be a dual feasible point;
and u* be the optimal dual solution found to the
RNP. Let H denotes the index set of noncandidate
arcs that violate (7) :

H={,)lu"i-u"j>cy}, (i, eR 10

Note that a nonbasic arc at upper bound cannot
be noncandidate because all noncandidate arcs
are not in RNP by definition. Therefore, equation
(8) is irrelevant to the PROBE. Formally, a probe
is the operation of identifying the piercing points
(if any) of the line segment between u* and w

and dual constraints of noncandidate arcs in H,

158

L PN

Le., the set of all such vectors p between the
current RNP solution and a dual feasible point.
If we let p be any peoint on the line segment
between w and u*, then p can be defined as ;

p={—-k)w+ku", for some k[0,1]. (1)

Let (i, j) € R. Then the piercing point of the
line segment (11) and hyperplane h defined by
the dual constraint h = (i, j) € H is obtained by
solving the following for ky :

plei—e))=0—kn)w(ei—e;)
+khu'(ei—ej), (12)
where e and e are unit vectors in E™ with 1’s

in the ith and jth positions respectively. Equa-
tion (12) can be reduced to

pi—p;= (1 —ky)(w;—w;)+k,(uf —u). (13
From (7) and (13), we obtain

(Wi —W;—Cj

ky= ;
" (Wi—wj—u*i-i-u',-)

where(i,j) € H. (14)

In (14), a lower value of ky, indicates that the
hyperplane is closer to the feasible point w. In
the PROBE step, we identify the most violated
dual constraint that contains the most piercing
point, defined as the one closest to a feasible
point. Formally, a dual constraint h*€H is said

to be most violated if

k ,»= min{ky |h € H}. (15)

The piercing point, p*, of the hyperplane hx,
called the most piercing point, is dual feasible and
i1s given by

p’=(1-h,)w+k,u" (16)

tol
o

(

H

>

The methodology is valid for addirg any num-
ber of violated arcs, and the PROBE steo is valid
anytime, regardless of whether u#* is an optimum
to the RNP or not. As part of the method, unfavo-
rable arcs with zero flow (slack dual constraints)
may be removed from the primal ENP (dual to
the RNP). To release an arc from an RNP, let
L denote the index set of unfavorable nonbasic,
zero flow arcs that are considered in the current

relaxation :

L={(.i) [u"—u"<c; and x3=0},
(i,j) eC,andi,je N. an

Then, an arc 1* = (i, j) * is said to be a most

unfavorable arc if

I"={(i,))" I c gp=minu*;—u*;—cy,

for all (i,j) € L}. (18)

The arc, say (q, r)*, which corresoonds to the
most violated dual constraint is added to the
RNP and the most unfavorable arc, say (s, t) =,
is removed from the RNP. The index set of C and
R are updated as :

C=CU(q, 0"~ (s,1)", (19)
R=R~(q,)"U(s,t), (20)

where~denotes a set subtraction. Again, note
that several arcs may be added and removed. If
w = 0 (we probe to the origin from u), then (14)
and (16), respectively, are simplified to

cij

kh:_—;_—*—’

(0™ —u’y)

where (i,j) € H and (21
p'=ky.u". 22)

Then, when w = 0, the process of evaluating

kn+ in (15) is equivalent to the standard simplex

pricing operation to identify the most favorable
nonbasic lower bounded arc enter the basis of
NP, that is, find h* = (i, j)° such that

*

h*={(i,j)’t le (i) = max{u“i—u j Cij}y

for all(i,j) = R}. (23)

The new RNP with arc set C is solved to
optimality and the PROBE step is again
invoked. The process continues until all of the
dual constraints relative to the arcs in R are
satisfied by the dual solution to the current
RNP, u=.

3.2 Algorithm Statement

We now formally state the Pivot And Probe
Algorithm for Network Flow Problems (PAPA-
NET) :

Step 1 : Initialization

Form an initial RNP with a set of all artifi-
cial and slack arcs and few least cost arcs.
Calculate its dual solution u*. Let w=0 be
the initial feasible solution to the original
NPV ; C denote the set of arcs in the cur-
rent RNP ; R be the remaining set of arcs.
Continue with Step 2.

1) We used w=0 as an initial dual feasible solu-
tion. With an all artificial start, only artificial and
slack arcs are basic and all the flows of the st
ructural arcs are at their lower bound of 0. When
w=0, x;3=0, and c; >0 for all (i,j)EA, the pri-
mal constraint (5) may not be feasible but the
dual constraint (7) is satisfied. Thus w=0 is
initially feasible. When ¢ <0, (7) is not satisfied
by w=0. However, as mentioned earlier, probing
from a point to the origin is equivalent to the
standard simplex pricing procedure. Therefore,
probing with w =0 always converges and the ori-
gin may be the best estimate of an initial dual
feasible solution.

dE93 FA s glojx] E3HQl pricing whEel #3 A 159

Step 2 : PROBE

Define H from R (10). If H is empty, then
the current RNP solution is optimal to the
original problem and stop. Otherwise, iden-
tify the most piercing point p* and most
violated arc(s) from H using (14)~(16) and
the most unfavorable arc from L using (18).
Update the sets C and R by (19) and (20)
respectively. Update w with p#* or retain
w the first PROBE

requires one feasible dual solution, the ori-

1 2
several as w, w°, -

gin, and, thereafter, at least two feasible
dual solutions : the origin and p*. Continue
with Step 3.

Step 3 : Pivot

Solve the RNP with C by the standard net-
work simplex method and obtain a new du-
al solution u*. Return to Step 2.

The Algorithm converges as long as the si-
mplex method in Step 3 converges, because
probing from u to 0 is equivalent to the pric-
ing scheme of the network simplex method
and, in the worst case, the RNP can evolve to

become the original NP.

4. PAPANET Implementation

The PAPANET code was developed by modi-
fying an efficient existing primal network sim-
plex code, MINIC [23], to include a PROBE sub-
routine. In our implementation, PAPANET utili-
zes an all artificial start to form an initial RNP
that include the entire node set and all the
artificial and slack arcs. The number of least cost
arcs that enter the RNP in the first iteration is

set to equal the number of nodes. Once optimal

o
r.l
>

160

solution to the RNP is obtained with the network
simplex method, PROBE is called to identify arcs
to add to or remove from the RNP. Two feasible
dual solutions are used to find entering (can-
didate) arcs for the RNP. The first PROBE step
performs one probe, from the current solution to
the origin, and, thereafter, PROBE performs two
probes, one from the current solution to the origin
and one from the solution to the most piercing
point that was found in the previous iteration.
Instead of a single arc, PAPANET identifies
multiple arcs to enter or leave the RNP in the
test problems. Half of the unfavorably priced arcs
are removed from the RNP. The number of arcs
entering the RNP varies, depending upon the size
and the type of problem. Cyclic pricing was used
by both MINIC and PAPANET. For both, the
first favorably priced arc found enters the basis.
Both the MINIC and PAPANET codes incorpor-
ate typical data structures. The node lists consist
of the (1) node name, (2) requirement, (3) flow,
(4) dual, (5) predecessor, (6) orientation, (7) arcid,
and (8) next (thread). The arc lists consist of the
(1) arc name, (2) from node, (3) to node, (4) cost,
and (5) capacity.

In PAPANET, adding or removing arcs can
easily be done by using a flag, STATUS(),
indicating that an arc j is noncandidate (STA-
TUS(j) =0), candidate and nonbasic (STATU-
S(j)=1), or basis and candidate (STATUS(j) =
2). The computational results show that
PAPANET can solve NPs with a significantly
reduced number of arcs and pivots and, con-
sequently, a substantial computational time sav-
ings over the standard network simplex code
from which the implementation is derived. De-

tailed computational comparisons and analyses

iy
o

are provided in Section 3.

While testing th PAPANET, we observed the
well-known optimization phenomenon called the
long-tail-of-convergence (see [2, 12]), in obtain-
ing an optimal solution to each RNP. Basically,
as a method moves toward an optimum, the
improvement in the objective function value per
pivot tends to decrease. A second version of
PAPANET was developed to limit the effects of
this phenomenon. This version, APANETZ,
does not solve each RNP to optimality, but rather
solves each one to a near optimum by limiting
the number of pricing cycles (the number of
times the RNP arc list is completely checked) to
four before probing. Our preliminary tests indi-
cated that the objective values of these solutions
were typically within approximately 5% of the
optimal objective value to the RNP. Then, a probe
updates the arc list of the RNP. We shall refer
to the original implementation that optimizes
each RNP as PAPANET] and to the modified
coed that limits its optimization activity as PA~
PANET 2.

5. Computational Testing

PAPANET] and PAPANET 2 were tested by
solving medium-and large-scale rardomly gene-
rated capacitated network flow problems con-
structed by NETGEN [14]. The codes were de-
veloped in C and all solution CPU times reported
are on an IBM RS/6000 Model 590 POWE-
RStation (Workstation). In testing, our primary
interests were on measuring the solution CPU
time (exclusive of problem generation, input and
output), number of pivots, time per pivot, number
of PROBES, and number of arcs that entered the
RNP at least once.

B Z A s 9deix] &3 pricing Wl 3 A4 161

5.1 Medium - Scale Problems

<Table 1> shows the parameters of the 50 me-
dium-scale problems (Problem Set A) of a NET -
GEN problem suite developed by Klingman and
Mote [13]. Set A contains both transportation
(101~120) and transshipment problems (121~
150) having 5000 nodes with different sets of total
number of arc costs, capacity ranges, etc.

We selected a sample of three problems for
problem Set B to test the sensitivity of the new
algorithms with regard to different probe sizes.
This problem set includes two transportation
problems and one transshipment problem from
Problem Set A. The probe size is the maximum
number of arcs that may be found as candidate
in one probe and is defined as the fraction of the
total number of arcs. In a probe, the entire arc
list is scanned, and, from the arcs not in the RNP,
a set of best arcs of ‘probe size’ is added to RNP.
The computational results of both PAPANET1
and PAPANET? with a variety of probe sizes are
listed in <Table 2>. The solution CPU times and
PROBE times are shown in CPU seconds.

<Table 2> indicates that the number of PRO-
BEs and the PROBE times decrease as the probe
size increases. However, the overall solution
times are more dependent on the number of pivo~
ts rather than on the PROBE times, because the
PROBE CPU time is small compared to the total
solution time. The overall solution CPU times and
the pivot counts decrease up to a certain probe
size (i.e., .04 or 4% of the arcs on Problem 101)
and increase thereafter. The preliminary results
indicate that. on average, the maximum differen-
ces between the best and the worst solution CPU
times are about 15~20% of the best solution CPU

times when we restrict the probe size to the

range of .01 ~.05. The result implies that a probe
size of .04 is best (or near best) for medium-sized
transportation problems with 25000 arcs, .05 for
medium-sized transshipment problems, and .01
for fairly large, medium-scale transportation or
transshipment problems (75000 arcs or more).
This result suggests that the probe size must be
decreased as the problem size is increased. In
terms of solution CPU times, PAPANET 2 is su-
perior to PAPANET] by an average of 10~15%.

<Table 3> shows the computational results for
all 50 medium scale problems in Problem Set A
solved by the 3 different codes, MINIC, PAPA-
NET1 and PAPANET?2. In both PAPANET1 and
PAPANET?, the probe sizes are set to .04 for
transportation problems and .05 for transship-
ment problems. In <Table 3>, the “Total Arcs”
column contains the actual number of arcs of
each problem generated by NETGEN. The “Time
per Pivot” was calculated by taking the difference
between the solution CPU time and PROBE Time
(if applicable) and dividing the difference by the
total number of pivots. For both PAPANET1 and
PAPANET?2. “Arcs Entered” indicates the total
number of structural arcs that entered the RNP
at least once and “AVG. Size” is the mean num-
ber of arcs, including artificial, slack and struc-
tural arcs, in the RNP throughout the solution
process. For example, in Problem 108 having 5000
nodes and 50309 arcs, only 32% of the arcs are
needed by PAPANET? with an average RNP size
of 9698 arcs (19%). Similarly, PAPANET?2 utili-
zed 40% of the arcs keeping an average RNP size
of 13385 arcs (27%) and obtained an optimal so-
lution in 14.99 CPU seconds while MINIC solved
the problem in 69.03 CPU seconds (46 times
slower than PAPANET2).

162

{Table 1> NETGEN Problem Suite (Klingman and Mote 1987)

Arc costs Transshipment Capacity
Prob. No. No. No. No. Min- Max- Total %High % Min- Maxi- Random Objective
No. Nodes Sources Sinks Arcs imum imum Supply Sources Sinks Cost Capacity imum mum NoSeed Function

101 5000 2500 2500 25000 1 160 250,000 0 0 0 100 1 1,000 13502160 6,191,726
102 5000 2500 2500 25000 1 160 250,000 0 0 0 100 1 1000 4281922 72337144
103 5000 2500 2500 25000 1 100 250,000 0 0 0 100 1 1,000 44820113 218947553
104 5000 2500 2500 25000 (100)= (1) 230000 0 0 0 100 1 1,000 13430151 (19.100,371)
106 5000 2500 2500 25000 101 200 250,000 0 0 0 100 1 1000 14719436 31192578
106 5000 2500 2500 12500 1 100 125000 0 0 0 100 1 1000 1736578 4314276
107 5000 2500 2500 37500 1 100 375,000 0 0 0 100 1 1,000 19540113 7,393,769
108 5000 2500 2500 50,000 1 160 500,000 0 0 0 100 1 1,000 19560313 8405738
109 5000 2500 2500 75000 1 100 750,000 0 0 0 100 1 1000 2403303 9,190,300
110 5000 2500 2500 12500 1 100 250,000 0 0 0 100 1 1000 92480414 8975048
11 5000 2500 2500 37500 1 100 250,000 0 0 0 100 1 1000 4230140 4747532
12 5000 2500 2500 50,000 1 100 250,000 0 0 0 100 1 1000 10032490 4012671
113 5000 2500 2500 75000 1 100 230,000 0 0 0 100 1 1,000 17307474 297975
114 5000 500 4500 25000 1 160 230,000 0 0 0 100 1 1000 4925114 5821181
115 5,000 1500 3500 25000 1 100 250,000 0 0 0 100 1 1000 19842704 6353310
116 5000 2500 2500 25000 1 100 250,000 0 0 0 0 1 1,000 83392060 5915426
117 5000 2500 2500 12500 1 100 125,000 0 0 0 0 1 1000 12904407 4420560
118 5000 2500 2500 37500 1 100 375,000 0 0 0 0 1 1,000 11811811 7045842
119 5000 2500 2500 50,000 1 100 500,000 0 0 0 0 1 1,000 90023393 7724179
120 5000 2500 2500 75000 1 100 750,000 0 0 0 0 1 1000 93028922 8435200
121 5000 0 50 25000 1 100 250,000 %0 0 0 100 1 1000 72707401 66,366,360
122 5000 230 250 25,000 1 100 250,000 X0 20 0 100 1 1,000 93040771 30,997,529
123 5000 500 500 25000 1 100 250,000 500 500 0 100 1 1,000 70220611 23,388,777
124 5000 1500 1500 25000 1 100 250000 1,000 1000 0 100 1 1000 52774811 17803443
125 5000 1500 1500 25,000 1 100 230000 1500 1500 0 100 1 1,000 22492311 14,119,622
126 5000 500 500 12500 1 100 125000 500 500 0 100 1 1000 35269337 18802218
127 5000 500 500 37500 1 100 375000 500 300 0 100 1 1,000 30140302 27674647
128 5000 500 500 50,000 1 100 500,000 00 500 0 100 1 1000 49205455 30,906,194
129 5000 500 500 75,000 1 100 750,000 00 300 0 100 1 1000 42958341 40905209
130 5000 500 500 12500 1 100 250,000 500 500 0 100 1 1000 25440925 38939608
131 5000 500 500 37500 1 100 250,000 500 900 0 100 1 1000 75294924 16752978
132 5000 500 500 50,000 1 100 250,000 500 300 0 100 1 1000 4463965 13302951
133 5,000 500 500 75,000 1 100 250,000 00 500 0 100 1 1000 13390427 9830268
134 1,000 500 500 25000 1 100 250,000 00 500 0 100 1 1000 9250971 3804874
135 2500 500 500 25000 1 100 250,000 500 500 0 100 1 1000 54830522 11.729616
136 7500 500 500 25000 1 100 250,000 500 500 0 100 1 1,000 320593 33318101
137 10,000 500 500 25000 1 100 250,000 500 500 0 100 1 1,000 52900925 46426030
138 5000 500 500 25000 1 100 250,000 500 300 0 100 1 50 226033% 60710879
139 5,000 500 500 25000 1 100 250,000 00 300 0 100 1 250 55233099 32720682
140 5000 500 500 25000 1 100 250,000 00 300 0 100 1 500 7357001 27183831
141 5,000 500 500 25000 1 100 250,000 00 500 0 100 1 2500 10072458 19963286
142 5000 500 500 25,000 1 100 250,000 00 300 0 100 1 5000 55728492 20243457
143 5,000 500 500 25000 1 100 250,000 00 300 0 0 1 1,000 5093043 18586777
144 5000 500 500 25000 1 10 250,000 00 300 0 100 1 1000 94236571 2504597
145 5000 500 500 25000 1 1000 250,000 00 500 0 100 1 1,000 9488296 215956138
146 5000 500 500 25000 110000 250,000 500 300 0 100 1 1,000 48489922 2253113811
147 5,000 500 500 25000 (100) (1) 250,000 300 300 0 100 1 1,000 75578374 (427.908,373)
148 5000 500 500 25000 (50 49 250,000 500 300 0 100 1 1,000 44821152 (92,965,318)
149 5000 500 500 265000 101 200 250,000 500 500 0 100 1 1000 45224103 86,061,224
150 5,000 500 500 25000 1001 1100 250,000 500 50 0 100 1 1,000 63491741 619,314919

* () indicates negative number

WES A EA4 A 9leIx EFAQ pricing ¥l A A+ 163

{Table 2> Sensitivity Analysis of Probe on Problem Set B

. Probe Size

Problem | ‘Mgorithms 001 | 002 [003 | o004 | 005 0.1 1
CPU Time 1306 | 1293 | 1289 | 1040+ | 1230 | 1364 | 2%

No. Pivots 51069 | 49721 | 49030 | 42271 | 47208 | 50652 | 74087

PAPANET1 |\ pROBE % 19 17 12 11 8 6

(Tlﬁi* PROBE Time | 038 | 027 | 025 | 016 | 015 | 010 | 007
5000 arcs) CPU Time 1200 | 1084 | 109 | 1049+ | 1253 | 1236 | 1972
pAPANET | No-Pivols | 4782 | 43 | 43013 | 4361 | 4g224 | 67419 | 67419

No. PROBE 30 21 18 18 16 12 1

PROBE Time | 045 | 031 | 024 | 022 | 019 | 014 | 010

CPU Time 165 | 1609 | 1490 | 1437 | 1258« | 1406 | 1632

No. Pivots 73608 | 71822 | 67223 | 66055 | 60624 | 67781 | 76567

PAPANETL | N PROBE 2 18 15 13 1 9 8

<1T253> | PROBE Time | 034 | 024 | 020 | o016 | o014 | o010 | o07
(25000) | CPU Time 1468 | 14290 | 1416 | 1212 | 1L15+ | 1391 | 1592
PAPANET 2 | N0 Fivots | 64509 | 64630 | 67691 | 59117 | 56305 | 688454 | 72768

No. PROBE 28 21 2 16 14 12 12

PROBE Time | 038 | 025 | 024 | 019 | 015 | 012 | 010

CPU Time | 1402+ | 1419 | 1549 | 1619 | 1762 | 2314 | 4382

No. Pivots 4560 | 4633 | 50549 | 49636 | 5164 | 65460 | 114717

PAPANET | o pROBE 18 15 17 9 9 7 7

(%9) PROBE Time | 072 | 05 | 05 | 033 | 034 | 023 | o2
5000 o) CPU Time | 1245+ | 1348 | 1510 | 1460 | 1510 | 2415 | 4281
PAPANET 2 | No Pivols | 4172 | 44615 | 50549 | 48178 | 5290 | 68579 | 116271

No. PROBE 21 16 17 13 13 12 12

PROBE Time | 079 | 057 | 060 | 044 | 042 | 0% | 034

* Best overall solution CPU time.
TP = transportation, TS = transshipment.

The number of degenerate pivots required by
PAPANET] and PAPANET 2 are fewer than one
half of the degenerate pivots required by MINIC.
The average percentage of degenerate pivots
performed out of the total number of pivots are
49%, 40%, and 4196 by MINIC, PAPANET1 and
PAPANET 2, respectively. Clearly, by reducing
the working problem size, we maintain a “st-
ronger” basis and tighter problem formulation
than by carrying all arcs throughout the solution
process.

Similar to the case of LPs, All three codes are
relatively inefficient at solving transshipment
problems with negative arc costs (Problems 147
and 148). We recognize that when all arc costs

are negative, then, all arcs between transship-

ment nodes, and between transshipment nodes
and demand nodes (either way) will initially price
favorable, i.e.,

u;—u;—cy > 0 for x ;3 =0, (24)

where ui = u; = M, and M is a very large, finite
number. In cyclic pricing, most of the arcs enter
the basis and much time is required to remove
them. Not surprisingly, the computational results
shown in <Table 3> indicate that a large portion
(close to 100%) of the arcs have entered the RNPs
during the solution process of PAPANET1 and
PAPANET 2. For these problems, one may cust-
omize the method and the code by modifying the
probe rule only to admit an arc if exactly one arti-
ficial arc is incident to either its from or to node.

164

O 1000000 WOT TIC %ll BIET 7069 Ol WLl OFTH 98GG 1900000 W1 90 ll ROFT 6ERLE €l 80ELZ SLOO000 Seesh 14 99691 aLs
FEETT 1620000 [4Y CCT %Iv PLA0C T9LS 2Tl 2%61S B0ZPT 9986 OWZ0000 L0 21 %0p 2l6eq 6ShLS %28 EEERS 890000 08LLGE T8 0005 UBIIy
CROTT 470000 o0 T2 %Tv MOV 7ART9 19T %78 GOST BILB ZHZ0000 o <2 20r 0Pz 11269 %6k CIIPG GA20000 ETVETT 23 B9GLE UBajy
608V 6100000 600 11 %5 o0l CIeEl w0 %I IS LISE - L200000 o 8 Yoi YIui 10151 SO0 LG8 810000 LIECE 91 COZe w1
1666 STH000 169 8IE %L LOEES 10S¥ET LOT %6 6IE8C 6PLLT LZh0000 %9 216 %IL SISO Pe0LOE 2lL LI6ZET piA0000 TLCEVE €66 08esL BRI
16601 810000 810 91 26F9 999R¢ 229 [T %69C I0IPT 6896 LRTO000 9I0 €1 %89 PISOp 68919 %6V 680LS 2020000 68768 281 000%g 0ST
E9EIT ERI0000 810 <1 0629 €808E VIS ¥IT 2.S Q0EPI 9096 8310000 SO0 21 %09 Z9Re EBILY %E9 CISGS 0120000 0L238 8581 000Sc o1
6109 ORE0000 e 9lz %1 LSV OB0GLT €0L %P8 €860C 66FS 9650000 I8 012 %G1 812 glZgle 261 LEBLZ 9THO000 SZ96L1 8L 00052 81
6I¢ - SZr0000 169 88 %8 QoM 10SkEZ L0T %86 M 8IC L0000 969 2l %R JOIEZ KG0LO0E 20l 90leg LoHO00 9L52ET 66 00058 LT
19901 ¥610000 Lo Sl %S CEGLE S80S T0I %VS EVSEl 99¥6 020000 SI0 €1 %8 GLIZE ERM09 SofS 9L6SG LEZ0000 07256 vS%e 00082 9L
8EIl 060000 arp o1 255 6SE0E 01266 ¥Tl 208 €O8ET 1896 9170000 PO 11 %2 €078 WaI9 %LE CEEES LEZ0000 29866 S5e 0005%T a1
€60IT 1610000 oo 91 2695 (068 60E0S GL6 %S TgEl 8I6 68100010 €10 21 %95 6099 SKSLb 288 Q9105 6220000 92698 L9681 0002 23}
1086 £910000 910 vI %7L 609% L8he 9LS %6y PPECT 1288 9LTO000 SI0 €1 %IL ¥8I% L829¢ %Il 096Gy BLI0000Q 086£9 VIl 0005 jags
SI0IT 6910000 810 ¢l 299 660 6L 6L 208G ZZeEl 7916 |LICN00 ¢ro I %G99 8660 65C9Y 299 L68FC 9610000 8BLER W9t 000S2 44
€E101 6L10000 yro €l 2€9 06l LS WY %IE 9lgl 1016 Z8T0000 VIO 81 %29 ER0E 0S9F 2b9 8ZLCC HZ000'0 8R9L8 @RI 0005 Jig!
E96IT T120000 00 8T 28y 9E9IC QQOEL 9C1 %8 OVEPT G086 420000 S0 €1 %6y B6ECE 6LI9L 208 909y L920000 S9vi6 9% 0005 ol
IVEZ1 1620000 0o 81 288 KRB WIS €6 289 69T OIS0T 9820000 LT0 ST %EE LGEE €866 %y Z89Tr 8820000 616 1082 0002 &1
60661 020000 00 61 202 10957 OQWOPTY 9247 28L o9¥6I 8LIZT 9570000 80 9T %Iz 96882 Zveovl %cE SLIE 9L20000 S6086 0re 0005 81
<9191 20L0000 o <1 °89 €Ly 2109 SLZ 2CL €RI8L LTZC1 60M000°0 S0 b °£9 0999F Z76EL %9 LVEE9 VRHOD0 pLzve @ 0002 281
ekl 66500010 81g L1 %8S guich TIERL 962 %¥9 61691 ST 2080000 S0 €1 %8¢ 9/ 96RL %89 EVE9 L0000 920001 W 000 %1
LiL 8010000 o 11 S0k GSRGl oce obe SoE 8906 €29 6010000 010 6 %t ERIET [ZTHE %tV REOLE 0110000 <99 629 0002 gel
6021 6100000 erg 2l %L 9201 - ZI6ET R0 %l XIS L1gE - LS0000'0 110 6 %L 9101 fo1ct %8l VE6C 8100000 LIEEE 6T 0005 Vel
€600 BRIC000 e €1 %09 BEVES 60M® £ %92 G981 ORICT 2610000 &0 6 2409 1080 1Cre8 2699 SBROET L02000'0 £58202 1617 000GL €61
£u9l ar10000 &0 v %ol9 LKBLY EOvRL TGl 2098 LZRLY ORVCE 2020000 €0 01 %09 08305 €098 289 6PLIOT 2120000 IP1E9t oFve 00008 z€l
a6ET 6810000 iZo €1 %oBC 06ROE Gty 221 %Sk L8691 OZETT 160000 000 T1 %498 IZOF L8ETL %08 6LWOR 20000 THOECT 2¢6s 00SLE 1€1
O8eR L120000 00 L1 Solp OOIOI OeECy LL) %ofl 006 Z0LL YEZO000 800 S %Lk HINT THO6E °0C TEBOC Z80000°0 oty ROl (0Tl et
Tebee €120000 60 Cl 2olb LOEEC ORE9ZY TIE %86 6IERC 6VLLL £S20000 SEO OF %lp OIS RE0KT St E0EB01 220000 218574 2989 000Gk 651
9Ll 6120000 Lo St %05 LM 69VI6 €02 %8 UKL L1 RET0000 wo I1 %8y 208y Z6ET0L °lC PIERR 1560000 W0LL LUy 00008 81
SWIFL - $020000 ®0o vl %lS LZELE RUGL TSL %9y FEILL SBIT V120000 610 I °0¢ T6R7F LEXR %8G CIILL $HE0000 6901 SEVe 00SLE L1
vios v1c0000 600 91 2oVS 66CLL CZECE 669 %9L 08%6 88vL 6130000 00 €1 %IS 9¥Kl OFSYE %8G €9EZ 20000 R0 SL6 0021 e
PLBIT 920000 aro 91 2€6 6Y91 L6LIS 67l 205 OI92T 2916 1920000 SI0 21 208 19691 €e898 28y 86E8C PIE0000 06568 Slee 000%2 =4
03211 10000 610 L1 %07 9606 B8ORS 9ET °aRF TIIZT 896 TS20000 €0 21 %8 vieEZ 0129 o6l L¥SZP 8820000 £1016 8T'% (0052 ¥l
SOETT ZBI000D ao vl 26VG ZES0E S0E9S 0T 255G £Z8C1 2066 S0Z0000 €10 11 %28 LE9IE P2909 Jobl LBCEC BE20000 11926 M 0005 €l
QgIll 6LI0000 aIe n %29 THEE TOLES LL6 2G OT0ET Z9%6 8610000 ol0 T1 %6S LEChe ¥89RS %09 9EERS L12000'0 £0826 0z 000SC a4t
6L8TT TLI0000 o 81 %19 Gl92G RELSR 6P %29 02%SI 16p01 6L10000 9ro ST %19 GLS9 LT8S0T %09 €E0T9 6020000 0201 8E€TC 000SC 121
€871 1630000 wo €l 291 8IGL 8LISy 91 %V 6E8LT OR]TT 0ZE0000 €0 6 %91 OI8L 9e%6v %EE BLES 1980000 256291 996S 0EeSL 021
6GEET ZRZ00G0 *0 91 %02 P8 0l €20 %26 006ST PLEOT 2620000 S0 01 %61 9IS 6I6CF 288 8LEY LSE0000 8101 STyy 10806 61T
CLROT 8520000 €0 €l 280 VLT 28088 TOT %lb GLCT b6 TLZ0000 120 2l %80 IR9IT E€8]Tp 2€F SB0LF TZE0000 £28601 0zSe L6LlE |11
BSL 1720000 €10 07 %W PIOT VESIE €81 209L VRS 9699 9120000 00 91 %Tr IZ9el 9pioe %Gk BCORT 120000 69£6E 0001 91R21 LT
6 920000 g0 <l %2E LSl MO 28 285 8l 1Ig8 £L20000 20 1 %EE I96p1 Qo6 %€ FLEEE STE00G0 COrLL wie 1He% arr
W6 2120000 @0 Ll %ol C6SPT €STEE €98 %6F 10921 2gI8 2220000 LTO €1 9%.LE SI%ST l0goy %25 SOL9F 6920000 8RG68 eI 296% eI
1966 GLI0000 0z0 91 2bb LWOST WRVE 619 258y T2l €608 €61000°0 1S CO § ST 1 O 5 %IG LO0VZy 9620000 96E28 ! PI992 jal!
09y91 ¥920000 o €1 %66 LLIlZ 686G 611 QlIE VCVES Z08Y1 9820000 €0 01 %8¢ QI6eC 61189 209 LI6ZET B0E000'0 2E86T 0929 BIECL 1l
9e6eT Lbe0000 €0 YI %9¢ 16891 6.5 12D 2GE 9SBLT 9g80T 820000 620 TT 2356 CRGRT €91€C 2695 €906 0180000 152891 s 92008 Ay
PBLIT 6EZ000'0 o SI %8c 9961 LISy T %Iy 06eST 6386 ¥S20000 €0 21 %.E 18681 I60IS %96 G508 T0E0000 COTZpT SLTY RRLE Ju
a6LL - SEZ0000 1o Lt %€E SC0l 2Zle SPL %9L Lelb €3¢L 1620000 I ST %Z€ QU6IT L66LE %olh 6¥5Z 9920000 609€S 8yl g8l OIT
L8F91 1820000 & gl %6C CHEET VSEES €U 2.8 06661 E6IET 60£0000 €0 8 %1¢ 9Rel €2629 %6 T8EI8 9¥E0000 80LL07 S8TL 66CSL 601
GReEl pL20000 660 9T % ToLIl geees Gl %cE ¢I09T 8696 0820000 00 0T %61 S2E0 20LES %Iy G269 6TH000 G299t €069 60806 801
QSSIT 2820000 €0 ¥ %28 0okl 2lepy V1T %LE QLOPT 9286 7920000 610 0T %82 Z8LET 2IWp %8y 259 pZE0000 VEVBET Srsh 2e8le 101
2808 L2z0000 mo 81 %9y 8EWOT 8409 €8 %SL W6 ZZIL LE20000 IT0 9T %GF 9068T PiETY %66 0I9gE SH20000 SPIES 19€1 0831 Q01
6126 0520000 0o Lt %VE 60T 6II%E V26 %Ly 76611 6.8 SH20000 L0 p1 %PE 620ET PILSE %65 0v9S T0E0000 L9101 618 CEESS <01
99 S82000'0 STT 26 %L OL6T 6865 T9T %l 66991 S¥19 2620000 T P8 %98 6L6T bLESS 2688 PBASS 9620000 LEVIOT 830 WS w01
L0TET 9120000 L0 02 %S E%wS 8% L2 %09 ZRLST 16201 2920000 €0 PT %S W9 £9066 281 SBIPT POE0000 008921 b g8t €01
8&rIl L920000 @0 8T %R L09% ¥6R09 V9T %VS TGLET 9986 0520000 20 T %9 S69% 22eeL 29T Leg’l TGe0000 EITP1T K0y LBEST 201
%l9 R6 CE20000 o 81 2096 EENST T9Ek SO1 205 9921 2608 2hd00 9T0 21 %8 6lIpl 2Ledh 208 LBEE (0£0000 PPLIOT 608 9EeSe 101
PUAU paIUY IS 10AL] WO oul], gOM 10Al] SI0Al] SIOAl] oumj PO pORWY 921 10AM] O OWLL gOM 10Al] SIAL SIOAld owiy, SIOAl] S10Al] 10Ald Wod | SI10A] uny sy ON
SIYO SMY DAV QU] doud oN Boq ddq ON QdD MUY Y DAV sun, q0dd ON a8 ON OdD A B], ON Nd) ey 90k
GLANVAVI TLINVdVd DINTIN

Y 185 Welqoid uo

Slinsey leuonendwo) <¢ alqel>

WEgZ 2 2ol 3lelH EaHe pricing WHlel B AT

When we exclude the outliers (Problems 147
and 148 ; both transshipment problems having
arcs with negative costs), there is only one ins-
tance where the solution CPU time of MINIC is
superior to that of PAPANET] and PAPANET?2.
Problem 138 is tightly capacitated : the maxi-
mum capacity is limited to 50 which is very small
compared to the problem’s total supply (250,000).
Tightly capacitated problems require many arcs
to be nonbasic at their upper bounds in an optimal
solution and, as a result, a large proportion of the
arcs must enter the basis throughout the solution
process. For Problem 138, 78% and 86% of the
arcs are added to the RNP at least once by
PAPANET 1 and PAPANET 2, respectively. [Fi-
gure 2] contains the plot of the solution CPU
times versus different values of maximum capa-
cities (all other parameters are constant) for runs
of the three codes solving Problem 138. [Figure
2] indicates that both PAPANET 1 and PAPA-

40

165

NET 2 are superior to MINIC when the maxi-
mum capacity is greater than or equal to 200
(0.08% of the total supply).

In <Table 4>, we summarize a comparison of
the computational results of the 50 medium-scale
problems. For example, PAPANET?2 solved Pro-
blem 108 with 329 (1/3.09) of the pivots required
by MINIC and an overall time saving of 78%
({1-(1/461D over MINIC. On average, PAPAN-
ET1 requires 1.85 times fewer pivots and 2.07
times less solution CPU time than is required by
MINIC. By avoiding the long-tail-of-conver-
gence, PAPANET 2 achieves a 10% savings in
the number of pivots and a 15% savings in the
solution CPU time over PAPANETI; on ave-
rage, PAPANET 2 requires 43% of the solution
CPU time, and 50% of the pivots, of MINIC.
<Table 4> also indicates that reducing the wor-
king problem size decreases the CPU time per
pivot. PAPANET 2 requires a slightly larger

35

CPU Time In Seconds
-] 8 8

-t
(4]

10

5 1 i) I} 1 1 L

L.

MINIC
o
PAPANET1
pe
PAPANET2

L L [i 1.

50 180 250 750 1280

1750 2250 2780

Maximurn Capacity

[Figure 2] Plot of solution CPU fime versus maximum capacity for problem 138

166 4]

AR

(Table 4> Comparison of The Computational Results

CPU Time No. Prvots Per Pivot ime
Problem MINIC/ MINIC/ PAPAL/ MINIC/ MINIC/ PAPAY/ MINIC/ MINIC PAPAY/
No PAPA.1 PAPA.2 PAPA.2 PAPA.1 PAPA.2 PAPA.2 PAPA.1 PAPA.2 PAPA.2
101 293 291 0.9 241 232 097 081 0.78 097
102 2.19 245 112 158 1.89 1.20 0.71 0.76 107
103 17 1.70 097 1.27 132 1.03 0.72 0.76 1.6
104 179 192 107 1.89 200 1.06 099 09% 097
105 3.06 346 113 214 294 1.07 0.88 0.83 094
106 1.37 164 120 134 154 1.15 097 093 0.9%6
107 349 396 113 287 314 1.10 081 0.78 0.96
108 451 461 1.02 307 3.09 1.01 067 065 0.98
109 367 416 113 333 350 1.06 0.89 0.82 092
110 148 1.92 1.29 141 172 1.22 0.94 088 0.H
111 324 383 1.18 278 3.10 1.12 0.84 0.79 0.94
112 33 418 1.25 3.07 343 1.12 0.90 0.80 0.8
113 367 455 1.24 348 408 117 0.93 087 094
114 286 314 110 240 241 1.00 0.82 0.74 0.90
115 253 283 112 212 2.28 1.08 0.82 079 0%
116 204 271 135 1.80 221 123 087 0.78 090
117 131 1.28 097 1.29 1.23 0% 097 09 098
118 3 350 115 262 289 1.10 08 0.81 095
119 3.3 361 1.07 282 294 1.4 0.82 0.79 097
120 368 408 111 327 337 1.03 087 080 092
121 112 144 1.29 097 1.29 1.23 0.86 0.82 0%
122 173 208 120 1.60 1.7 1.09 091 0.82 090
123 174 204 117 153 1.65 1.08 087 0.79 092
124 1.66 192 115 1.46 1.63 111 0.87 0.84 0.96
125 1.90 218 1.15 1.59 1.73 1.09 0.83 0.78 094
126 121 1.39 115 110 125 113 091 088 098
127 1.8 2271 1.23 1.64 193 1.18 0.87 084 0.96
128 176 210 1.20 1.68 1.86 111 0% 087 092
129 191 220 1.15 1.74 1.93 1.11 090 0.86 096
130 117 140 120 1.6 117 112 089 083 093
131 204 241 1.18 1.84 2.10 1.14 0.89 0.85 0.9
132 19 2.28 115 192 207 1.08 0% 0.89 093
133 257 258 1.00 243 240 0.99 0.93 091 0.98
14 164 198 1.21 2.21 2.39 1.09 119 1.02 08
13% 181 202 112 1.4 194 1.06 0.99 093 094
136 146 148 101 1.27 2.28 1.01 0.87 0.86 099
137 1.38 152 111 168 139 1.09 0.92 091 098
138 0.7 098 131 0.70 0.86 1.24 092 087 094
139 1.19 145 1.22 098 1.19 1.21 0.82 081 0.9
140 149 167 112 1.28 1.3 1.04 085 0.79 093
141 1.89 222 117 177 1.9 112 092 0.83 0.9%
142 1.96 207 1.06 1.81 1.83 1.01 091 0.86 0%
143 171 1.98 116 173 1.87 1.08 0.9 092 093
144 216 202 094 181 171 0% 0.83 0.83 1.01
145 167 1.719 1.08 153 159 1.03 091 087 0%
146 177 224 1.27 1.57 187 119 0.88 082 094
147 072 093 1.30 0.76 0.99 1.31 1.00 1.00 0.9
148 085 1.06 1.26 084 1.03 1.22 0% 091 096
149 154 163 1.06 140 143 1.03 090 0.87 097
150 1.48 163 1.10 1.38 149 107 092 089 0.97
High 451 461 1.35 348 408 131 119 1.02 1.07
Low 0.72 093 094 0.70 0.86 0% 067 065 0.8
Mean 207 235 115 1.8 200 1.10 0.89 08 0%
Median 1.80 208 115 171 187 1.09 089 0.84 0%
STD 0.86 0.96 0.09 0.70 0.74 0.08 0.08 0.07 0.04
Averages
Transportation(20) 21 313 113 2.33 257 1.08 0.85 081 0%
Transshipment(30) 160 183 116 149 163 111 091 087 0%
12,500 arcs(4) 148 172 116 1.39 153 110 094 0.89 0%
25000 arcs(31) 1.76 198 1.14 158 1.72 1.10 0.89 0.85 0.96
37500 arcs(5) 273 320 117 235 263 1.13 085 081 0.5
50,000 arcs(5) 300 3.36 1.14 251 268 1.07 0.8 0.80 094

75,000 arcs(5) 310 351 113 2.8 3:05 107 090 085 094

number of arcs than PAPANET1 does. However,
the time per pivot required by PAPANET 2 is
slightly less than that required by PAPANET 1.
Recall that as the basis evolves through pivoting,
the basis tree becomes narrower and more
vertical, and the basis tree requires more update
time. When the improvement in the objective
value is negligible for many pivots, the tree is
relatively “fully grown” and requires much more
time per pivot than is required in the early stage
of the solution process.

<Table 4> also contains the average ratios of
the code measures for each type of problem (tr-
ansportation and transshipment) as well as those
for each problem size. The results show that the
new algorithm implementations, PAPANET1 and
PAPANET 2, are more efficient on solving tran-
sportation problems than on solving transship-
ment problems; and that the efficiency increases
as the problem size (number of arcs) increases.
Obviously, the density of a problem increases as
the number of arcs increases. The density of a
transportation problem is higher than that of a
transshipment problem when they have the same
number of arcs. Therefore, the result implies that
the computational efficiency of PAPANET incre-
ases as the density increases. Problems 112 and

132 have similar parameters, i.e., number of no-

ez A A o4 £ pricing Wyl B3 4F 167

des, number of arcs, arc costs, total supply, and
capacity, except for the types Qf the problems.
PAPANET 1 and PAPANET 2 are 3.35 and 4.18
times, respectively, faster than MINIC in solving
transportation Problem 112, while they are 1.99
and 2.28 times, respectively, faster than MINIC
in solving transshipment Problem 132. For hoth
PAPANET 1 and PAPANET 2, the efficiencies in
solving transportation problems exceeds the
efficiencies in solving transshipment problems.
<Table 5> shows the statistical results of
paired t-test for the three methods. For the sol-
ution CPU time, we can conclude that PAPA-
NETT is faster than MINIC and PAPANET 2 is
faster than PAPANET 1. In the case of the num-
ber of pivots, we can conclude that PAPANET
1 requirs fewer pivots than is required by MI-
NIC. However, there is no statistical evidence to
conclude that the number of pivots required by
PAPANET 1 and PAPANET 2 are different.
The convergence behavior of the three algori-
thms is shown in [Figure 3] by plotting the ob-
jective values versus the number of pivots for
Problem 107. The plots clearly show the effici-
encies of PAPANET 1 and PAPANET 2 over
MINIC. Note that PAPANET 2 converges very
quickly to a certain point (a near optimal solution
to the original problem) and then moves slowly

(Table 5> Statistical Results

DIFFERENCE | vEax | sToDEV | DR t (oo
MINIC - PAPANET 1 1421 16.26 49 6.177 0.000"
%};i MINIC - PAPANET 2 1691 1430 49 8.361 0.000"
PAPANET 1 - PAPANET 2 270 502 49 3.807 0.000™
MINIC - PAPANET 1 4202.76 | 4472042 49 6.989 0.000™
ng'ts MINIC - PAPANET 2 4572182 | 60205.60 49 5.370 0.000”
PAPANET 1 - PAPANET 2 151906 | 4278037 49 251 0.803

% p < 0.01

168 AR
‘Objective Valus
Biillons
T
0.8 |-
0.6 -
04 |-
02
i MINI c MINIC ipﬂmum
0 i i N I AV Y 1
15 30 f45 * 60 140
Number of Pivots
PAPANET2 PAPANET! thousands

optimum optimum

[Figure 31 Plot of objective value versus pivots for problem 107

toward an optimum. For some large applications
in which only an approximate solution is needed,
PAPANET 2 may be applied effectively. Since
PAPANET 2 does not solve the RNP to optima-
lity before probing, the slope of PAPANET 2 does
not change too rapidly. Therefore, it is not readily
evident when the PROBEs are performed. How-
ever, for PAPANET 1, the PROBESs can be easily
detected at the points where the slope changes
dramatically. PAPANET 1 has a somewhat lon-
ger tail of convergence than PAPANET 2 in sol-
ving each RNP.

5.2 Large-Scale Problems

The Large-scale Problem Set C contains five
randomly generated one million arc problems (two
transportation and three transshipment proble-
ms) designed by Barr and Hickman [6]. Each
problem was solved by MINIC, PAPANET] and

PAPANET2. The computational results along
with the parameters of each problem are provided
in <Table 6>.

The average improvements in solution CPU
time of PAPANET1 and PAPANET 2 over MINIC
are 5.51 and 6.01, respectively. As for the medi-
um-scale problems, PAPANET 2 saves an ave—
rage of 10% of the solution CPU time over PA-
PANET 1. For Problem 3, PAPANET 2 is 11.01
times faster and requires 84% fewer pivots
than does MINIC. For the problem, PAPA-
NET?Z utilized 12.41% of the total arcs, spent
9.18 seconds (2.1% of the total solution CPU
time) performing 18 PROBES (2 more than
PAPANET 1), and obtained an optimum 13%
faster than PAPANET 1. On four of the five
problems, the comparison ratios of the CPU
time far exceed the ratios of the number of

pivots, which implies that the time per pivot

viedz 74 sid eI A pricing Wl w3 A 169

{Table 6) Problem Set C Characteristics and Computational Results

Problem Problem
Characteristic* 1 2 3 4 5 Average
Type** TP TS TP TS TP
Nodes 10,000 20,000 20,000 50,000 50,000 30,000.00
Sources 5,000 4,000 10,000 10,000 25,000 10,800.00
Sinks 5,000 4,000 10,000 10,000 25,000 10,800.00
Arcs 1,000,000 1,000,000 1,600,000 1,000,000 1,000,000 1,000,000.00
Supply 2,500,000 2,500,000 10,000,000 10,000,000 2,500,000 5,500,000.00
Cost Range 1-100 1-100 1-100 1-10000 1-100 1-2080
CapacityRange 1-1000 1-1000 1-1000 1 300 1-1000 1-900
%Capacitated 100 100 0 100 100 80
Seed 13,502,460 75,578,374 13,502,460 63,491,741 13,450,451 35,905,097.20
MINIC
CPU Time 937.66 447610 4812171 48992.79 46,851.19 21,21409
No. Pivots 1,059,019 2618272 1,613,179 7,030,478 5,687,674 3,601,724
Per Pivot Time 0.00089 0.00171 0.00298 0.00697 0.00824 0.00416
PAPANET 1 :
CPU Time 198.28 72161 492.48 19,999.27 10,503.78 6,384.28
No. Pivots 221,579 599,400 289,582 4,330,593 1,972,711 1,482,773
Per Pivot Time 0.00076 0.00120 0.00167 0.00461 0.00532 0.00271
No. PROBE 22 13 16 24 20 1880
PROBE Time 30.21 6.34 860 1393 1331 1458
Arcs Entered 60,361 96,044 109,615 240,764 190,112 139,379
PAPANET 2
CPU Time 17252 812.01 43693 17,062.12 8961.19 548895
No. Pivots 201,915 606,988 264,124 3,370,484 1,612,814 1,211,265
Per Pivot Time 0.00070 0.00132 0.00162 0.00505 0.00555 0.00285
No. PROBE 27 19 18 39 29 26.45
PROBE Time 32.14 9.08 9.18 2441 1569 1810
Arcs Entered 100,345 145611 124,064 299,544 236,399 181,293
Comparisons
CPU Time
MINIC/PAPA. 1 473 6.15 9.77 245 446 551
MINIC/PAPA.2 545 2.51 11.01 287 9.23 6.01
PAPA1/PAPA2 1.15 0.90 1.13 117 1.17 1.10
No.Pivots
MINIC/PAPA.1 478 437 557 ’ 1.62 2.88 334
MINIC/PAPA.2 525 431 6.11 209 353 426
PAPA1/PAPA2 1.10 0.99 1.10 1.28 1.22 1.14
Per Pivot Time
MINIC/PAPA.1 1.17 142 1.79 151 155 1.49
MINIC/PAPA.2 1.27 1.29 1.84 1.38 1.49 1.45
PAPAL/PAPA2 1.09 0.91 1.03 091 096 0.98
* In all cases, the number of transshipmen sources and sinks, and percent high cost are 0.
=# TP = transportation, TS = transshipment.
decreased substantially as the working pro- is difficult to say that either PAPANET 1 or
blem size was reduced. On average, PAPANE1 PAPANET 2 requires more or less time per
used 14% of the total arcs and obtained a 33% pivot than the other. However, as far as the

saving of CPU time per pivot over MINIC. It overall solution CPU time is concerned. PA-

170

PANET? is generally superior to PAPA-
NETI. In only one case, Problem 2, dic PAPA-
NET! outperform PAPANET?Z, and only by
10% in terms of solution CPU time. Overall,
as with the results for solving medium-scale
problems <Table 6> also indicates that the
efficiencies of the new algorithms increase

with an increase in the problem size.

6. Summary and Conclusions

We have presented a new algorithm, the Pivot
and Probe Algorithm, for solving minimum cost,
capacitated, network flow problems. Two imple-
mentations, PAPANET1 and PAPANET?2 were
developed and tested. Computational experience
on randomly generated network flow problems
clearly indicates that the new method can sub—
stantially reduce the working problems size, the
number of pivots, the CPU time per pivot, and
the total solution CPU time required to solve a
network flow problem. We also have shown that
PAPANET 2 can avoid the long-tail-of-con-
vergence effect, by probing when a near optimal
solution to each relaxed network flow problem is
obtained, and thereby obtain an extra 10~15%
savings in solution CPU time. The test results
also imply that the efficiency of the new method
increases as the problem size increases. Any
network simplex-based code can be enhanced by
incorporating the Pivot and Probe Algorithm. In
the future, we intend to apply the procedure to
some specialized network flow problems and to
explore additional sensitivity issues on medium-
and large—scaled problems. To prove the effecti-
veness, it is essential to compare the method with
the other effective methods, such as steepest

edge rule.

REFERENCES

[1] Aderchunmu, R.S. and J.E. Aronson, “The
Solution of Multiperiod Network Flow Pro-
blems by Aggregation,” Management Sci-
ence, 39, 1(1993), pD.54—7l.

[2] Aronson, J.E., “A Survey of Dynamic Net-
work Flows,” Annals fo operations Resea-
rch, 20(1989), pp.1-66.

{3] Aronson, J.E. and B.D. Chen, “A Forward
Simplex Algorithm for Solving Multiperiod
Network Flow Problems,” Naval Research
Logistics Quarterly, 30(1986), pp.445-467.

[4] Balachandran, V. and G.L. Thompson, “An
Operator Theory of Parametric Program-
ming for the Generalized Transportation
Problem : 1. Basic Theory,” Naval Rese-
arch Logisitcs Quarterly, 22, 1(1975), pp
79-100.

(5] Barr, R.S., Fred Glover and D. Klingman,
“Enhancements of Spanning Tree Label-
ling Procedures for Network Optimization,”
Infor., 17, 1(1970), pp.16-34.

[6] Barr, R.S. and B.A, Hickman, “Parallel Si~
mplex for Large Pure Network Problem :
Computational Testing and Sources of Spe~
edup,” Operations Research, 42, 1{1994), pp.
65-80.

[7] Bazaraa, M.S., J.J. Jarvis ans H.D. Sherali,
Linear Programming and Network Flows,
2nd ed., John Wiley & Sons, New York, NY,
1990.

(8] Bertsekas, D.P., Linear Network Optimi-
zation : Algorithms and Codes, The MIT
Press, Cambridge, MA, 1991.

[9] Evans, JR. and E. Minieka, Optimization

ez -E':Xﬂ %H‘?—é’éﬂ 3\1"1/‘1 ﬁf—]jzi‘%l pricing ¥

Algorithms for Networks and Graphs, 2nd
ed.,, Marcel Dekker, Inc., New York, NY,
1992.

[10] Fulkerson, D.R., “An Out-of-Kilter Me-
thod for Minimal-Cost Flow Problems,” J.
Society of Industrial and Applied Math-
ematics, 9, 1(1961), pp.18-27.

[11] Glover, F., D. Klingman and N.V. Phillips,
Network Models in Optimization and their
Applications in Practice, John Wiley & Sons,
New York, NY, 1992.

[12] Ho, J.K. and E. Loute, “Computational Ex-
perience with Advanced Implementation of
Decomposition Algorithms,” Mathematical
Programming, 29, 3(1983), pp.283-290.

[13] Klingman, D. and]. Mote, “Computational
Analysis of Large-Scale Pure Networks,”
Presented at the Joint National Meeting of
ORSA/TIMS, October, 1987.

[14] Klingmanm, D., A. Napier and]. Stutz,
“NETGEN : A Program for Generating La-
rge Scale Capacitated Assignment, Tran-
sportation, and Minimum Cost Flow Net-
work Problems,” Management Science, 20,
5(1974), pp.814-821.

[15] Mathies, S. and P. Mevert, “A Hybrid Al-
gorithm for Solving Network Flow Probl-
ems with Side Constraints,” Computers and
Operations Research, 25, 9(1998), pp.745-
756.

[16] Mateus, G.R., HP. Luna and A.B. Sirihal,
“Heuristics for Solving Distribution Netwo-
rk Design in Telecommunication,” Journal
of Heuristics, 6, 1(2000), pp.131-14&.

[17] Melkote, S. and M.S. Daskin, “Capacitated
Facility Location/Network Design Proble-
ms,” European Journal of Operational Re-
search, 129, 3(2001), pp.481-495.

[18] Sethi, A.P., Algorithmic Enhancements of

rf
2
(i
=
[
-

171

the Simplex Method, Unpublished Doctoral
Dissertation, Graduate School of Industrial
Administration, Carnegie-Mellon Universi-
ty, Pittsburgh, PA, April 1983.

[19] Sethi, A.P. and G.L. Thompson, “The Non~
Candidate Constraint Method for Reducing
the Size of a Linear Program,” in Redun-
dancy in Mathematical Programming, Kar-
wan, Mark, Vahid Lotfi, Jan Telgen and
Stanley Zionts, eds., Springer—Verlag, Ber-
lin, Germany, 1983.

[20] Sethi, A.P. and G.L. Thompson, “The Pivot
and Probe Algorithm for Solving a Linear
Program,” Mathematical Programming, 29,
2(1984), pp.219-233.

[21] Sethi, A.P., GL. Thompson and M.S. Hung,
“An Efficient Simplex Pricing Procedure,”
Working Paper No.1990-42, Graduate Sc-
hool of Industrial Administration, Carnegie-
Mellon University, Pittsburgh, PA, 1990.

[22] Simonnard, M.A., Linear Programming, Pre-
ntice-Hall, Englewood Cliffs, NJ, 1966.

{23} Sun, M., “MINIC : MINImum Cost Network
Flow Code,” Department of Management
Sciences and Information Technology, Te-
rry College of Business Administration, The
University of Georgia, Athens, GA, 1990.

[24]) Thompson, G.L. and A.P. Sethi, “Solution of
Constrained Generalized Transportation Pro-
blems Using the Pivot and Probe Algori-
thm,” Comput. & Ops. Res., 13, 1(1986),
pp.1-9.

[25] Xiong, D., “A Three-Stage Computational
Approach to Network Matching,” Trans-
portation Research, 8C, 1(2000), pp.71-89.

[26] Zhang,]. and Z. Liu, “A Further Study on
Inverse Linear Programming Problems,”
Journal of Computational and Applied Ma-
thematics, 106, 2(1999), pp.345-359.

