• Title/Summary/Keyword: pitch bias

Search Result 36, Processing Time 0.025 seconds

A Study on JFET and FLR Optimization for the Design and Fabrication of 3.3kV SiC MOSFET (3.3kV SiC MOSFET 설계 및 제작을 위한 JFET 및 FLR 최적화 연구)

  • YeHwan Kang;Hyunwoo Lee;Sang-Mo Koo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.155-160
    • /
    • 2023
  • The potential performance benefits of Silicon Carbide(SiC) MOSFETs in high power, high frequency power switching applications have been well established over the past 20 years. In the past few years, SiC MOSFET offerings have been announced by suppliers as die, discrete, module and system level products. In high-voltage SiC vertical devices, major design concerns is the edge termination and cell pitch design Field Limiting Rings(FLR) based structures are commonly used in the edge termination approaches. This study presents a comprehensive analysis of the impact of variation of FLR and JFET region on the performance of a 3.3 kV SiC MOSFET during. The improvement in MOSFET reverse bias by optimizing the field ring design and its influence on the nominal operating performance is evaluated. And, manufacturability of the optimization of the JFET region of the SiC MOSFET was also examined by investigating full-map electrical characteristics.

  • PDF

Performance analysis of subjective Loudness meter with ITU-R BS. 1387-1 algorithm for digital audio (디지털 오디오 주관적 음향레벨 계측기 구현을 위한 ITU-R BS. 1387-1의 알고리즘 특성 분석)

  • Ngan, Nguyen Vo Bao;Park, Seonggyoon;Ro, Soonghwan;Han, Chankyu
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.395-404
    • /
    • 2012
  • In this paper, the perceived loudness metering algorithm based on ITU-R BS.1387-1 was investigated and implemented, and its performance was evaluated by applying to 23 pure tones and 9 digital audio samples. Error of the tone test results compared with ISO226:2003 was below 5%, and sample test results, in comparison with Moore's algorithm, showed deviation of less than 4.7% and correlation of 0.96. On the other hand, it was investigated how the implemented algorithm's performance was subject to auditory pitch scale. Its result showed that the algorithm with 37 auditory filters, through correcting a bias effect, has a good performance of less than 2% in comparison with the one with 109 auditory filters.

Uncertainty Analysis for Seakeeping Model Tests (정현파 중 운동모형시험에 대한 불확실성 해석)

  • Deuk-Joon Yum;Ho-Young Lee;Choung-Mook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.75-89
    • /
    • 1993
  • The present paper describes an application of UA(Uncertainty Analysis) to seakeeping model test, basically according to the Performance Test Code of ASME(American Society of Mechanical Engineers), in which all the possible error sources involved in the preparation of test, calibration of instruments, data acquisition and analysis are quantified, and summed up with error propagation coefficients to the final uncertainties. The differences between the static test such as resistance and propulsion test and the dynamic test like seakeeping test are clearly identified during all the procedures of UA and asymmetric bias errors are considered. The DRE(data reduction equation) subject to present UA are the heave and pitch response amplitude operator and nondimensionalized absolute frequency. The usefulness of UA in seakeeping test were confirmed not only for quantifying errors and improving measurement accuracy but also for the validation of various seakeeping analysis tools.

  • PDF

Effect of Various Parameters on Stress Distribution around Holes in Mechanically Fastened Composite Laminates (기계적으로 체결된 복합재료 평판에서 다양한 인자의 영향에 따른 원공 주위의 응력분포)

  • Choi Jae-Min;Chun Heoung-Jae;Byun Joon-Hyung
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.9-18
    • /
    • 2005
  • With the wide applications of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joints have become a very important research area because the joints are often the weakest areas in composite structures. This paper presents an analytical study of the stress distributions in mechanically single-fastened and multi-fastened composite laminates. The finite element models which treat the pin and hole contact problem using a contact stress analysis are described. A dimensionless stress concentration factor is used to compare the stress distributions in composite laminates quantitatively In the case of single-pin loaded composite laminate, the effects of stacking sequence, the ratio of a hole diameter and the width of a laminate (W/D ratio), the ratio of hole diameter and distance from edge to hole (E/D ratio), friction coefficient and clamping force are considered. In the case of multi-pin loaded composite laminate, the influence of the number of pins, pitch distance, number of rows, row spacing and hole pattern are considered. The results show that P/D ratio and E/D ratio affect more on stress distributions near the hole boundary than the other factors. In the case of multi-pin loaded composite laminate, the stress concentration in the double column case is better than the other cases of multi-pin loaded composite laminate.

Gravity Removal and Vector Rotation Algorithm for Step counting using a 3-axis MEMS accelerometer (3축 MEMS 가속도 센서를 이용한 걸음 수 측정을 위한 중력 제거 및 백터 전환 알고리즘)

  • Kim, Seung-Young;Kwon, Gu-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.43-52
    • /
    • 2014
  • In this paper, we propose Gravity Removal and Vector Rotation algorithm for counting steps of wearable device, and we evaluated the proposed GRVR algorithm with Micro-Electro-Mechanical (MEMS) 3-axis accelerometer equipped in low-power wearable device while the device is mounted on various positions of a walking or running person. By applying low-pass filter, the gravity elements are canceled from acceleration on each axis of yaw, pitch and roll. In addition to DC-bias removal and the low-pass filtering, the proposed GRVR calculates acceleration only on the yaw-axis while a person is walking or running thus we count the step even if the wearable device's axis are rotated during walking or running. The experimental result shows 99.4% accuracies for the cases where the wearable device is mounted in the middle and on the right of the belt, and 91.1% accuracy which is more accurate than 83% of commercial 3-axis pedometer when worn on wrist for the case of axis-rotation.

Development of $14"{\times}8.5"$ active matrix flat-panel digital x-ray detector system and Imaging performance (평판 디지털 X-ray 검출기의 개발과 성능 평가에 관한 연구)

  • Park, Ji-Koon;Choi, Jang-Yong;Kang, Sang-Sik;Lee, Dong-Gil;Seok, Dae-Woo;Nam, Sang Hee
    • Journal of radiological science and technology
    • /
    • v.26 no.4
    • /
    • pp.39-46
    • /
    • 2003
  • Digital radiographic systems based on solid-state detectors, commonly referred to as flat-panel detectors, are gaining popularity in clinical practice. Large area, flat panel solid state detectors are being investigated for digital radiography. The purpose of this work was to evaluate the active matrix flat panel digital x-ray detectors in terms of their modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). In this paper, development and evaluation of a selenium-based flat-panel digital x-ray detector are described. The prototype detector has a pixel pitch of $139\;{\mu}m$ and a total active imaging area of $14{\times}8.5\;inch^2$, giving a total 3.9 million pixels. This detector include a x-ray imaging layer of amorphous selenium as a photoconductor which is evaporated in vacuum state on a TFT flat panel, to make signals in proportion to incident x-ray. The film thickness was about $500\;{\mu}m$. To evaluate the imaging performance of the digital radiography(DR) system developed in our group, sensitivity, linearity, the modulation transfer function(MTF), noise power spectrum (NPS) and detective quantum efficiency(DQE) of detector was measured. The measured sensitivity was $4.16{\times}10^6\;ehp/pixel{\cdot}mR$ at the bias field of $10\;V/{\mu}m$ : The beam condition was 41.9\;KeV. Measured MTF at 2.5\;lp/mm was 52%, and the DQE at 1.5\;lp/mm was 75%. And the excellent linearity was showed where the coefficient of determination ($r^2$) is 0.9693.

  • PDF