DOI QR코드

DOI QR Code

Performance analysis of subjective Loudness meter with ITU-R BS. 1387-1 algorithm for digital audio

디지털 오디오 주관적 음향레벨 계측기 구현을 위한 ITU-R BS. 1387-1의 알고리즘 특성 분석

  • Ngan, Nguyen Vo Bao (School of Information and Communication Engineering, Kongju National University) ;
  • Park, Seonggyoon (School of Information and Communication Engineering, Kongju National University) ;
  • Ro, Soonghwan (School of Information and Communication Engineering, Kongju National University) ;
  • Han, Chankyu (School of Information and Communication Engineering, Kongju National University)
  • Received : 2012.12.14
  • Accepted : 2012.12.21
  • Published : 2012.12.31

Abstract

In this paper, the perceived loudness metering algorithm based on ITU-R BS.1387-1 was investigated and implemented, and its performance was evaluated by applying to 23 pure tones and 9 digital audio samples. Error of the tone test results compared with ISO226:2003 was below 5%, and sample test results, in comparison with Moore's algorithm, showed deviation of less than 4.7% and correlation of 0.96. On the other hand, it was investigated how the implemented algorithm's performance was subject to auditory pitch scale. Its result showed that the algorithm with 37 auditory filters, through correcting a bias effect, has a good performance of less than 2% in comparison with the one with 109 auditory filters.

본 논문에서는 객관적 오디오 품질 분석에 대한 권고안인 ITU-R BS.1387-1의 귀의 모델을 토대로 라우드니스를 객관적으로 측정할 수 있는 알고리즘을 구현하며, 그 성능을 23개의 순음과 9개의 샘플 디지털 사운드에 적용하여 평가하였다. 순음의 경우 ISO226:2003에서 제공하는 실험 데이터와 비교한 결과 5%이하의 오차를 보이며, 디지털 사운드 실험 결과도 Moore 모델의 측정결과와 비교할 때 4.7%이하의 편차와 0.96이상의 코릴레이션을 나타내어 좋은 성능을 보였다. 한편 구현 알고리즘에 적용한 청각필터 수에 따른 성능 변화를 분석하기 위해 21개의 별도의 샘플 디지털 사운드에 적용하였다. 그 결과를 분석하여 보면, 37개의 청각필터를 갖는 구현 알고리즘에 바이어스 보상값을 적용함으로써 109개 필터를 사용하는 경우에 대해 2%미만의 오차를 갖는 양호한 성능을 갖도록 할 수 있었다.

Keywords

References

  1. Zwicker E. and Fastl H., "Psycho-acoustics, Facts and Models", Springer Verlag, 1990.
  2. Moore B.C., "An introduction to the psychology of hearing", Academic Press, London, 1989.
  3. Zwicker E., Fastl H., and C. Dallmayr, "Basic-Program for Calculating the Loudness of Sounds from Their 1/3-oct Band Spectra According to ISO 532B," Acustica, vol.55, No.63, 1984.
  4. Zwicker E., Fastl H., U. Widmann, K. Kurakata, S. Kuwano and S. Namba, "Program for calculating loudness according to DIN 45631(ISO532B)," J. Acoust. Jpn(E) vol.12, pp.39-42, 1991. https://doi.org/10.1250/ast.12.39
  5. B.C.J. Moore and B.R. Glasberg, "A Revision of Zwicker's Loudness Model," Acustica, vol.82, pp.335-345, 1996.
  6. B.C.J. Moore, B.R. Glasberg, Thomas Baer, "A model for the prediction of thresholds loudness and partial loudness", J. Audio Eng. Soc., vol. 45, No. 4, pp. 123-177, 1997.
  7. Schroeder M.R., Atal B.S. and Hall J.L. "Optimizing digital speech coders by exploiting masking properties of the human ear", J. Acoust. Soc. Am., Vol. 66, pp.1647-1652, 1979. https://doi.org/10.1121/1.383662
  8. Beerends J.G. and Stermdink J.A., "A perceptual audio quality measure based on a psychoacoustic sound representation", J. Audio Eng. Soc., Vol. 40, pp.963-978, 1992.
  9. Beerends J.G. and Stermdink J.A., "A perceptual speech quality measure based on a psychoacoustic sound representation", J. Audio Eng. Soc., Vol. 42, pp.115-123, 1994.
  10. Terhardt E., "Calculating Virtual Pitch", Hearing Research, Vol. 1, pp.155-182, 1979. https://doi.org/10.1016/0378-5955(79)90025-X
  11. Karjalainen J., "A new auditory model for the evaluation of sound quality of audio system", Proceedings of the ICASSP, Tampa, Florida, pp.608-611, 1985.
  12. Cohen E.A. and Fielder L.D., "Determining noise criteria for recording environments", J. Audio Eng. Soc., Vol. 40, pp.384-402, 1992.
  13. International Standard ISO226:2003, "Normal equal-loudness-level contours", 2003
  14. Recommendation ITU-R BS.1387-1, "Method for objective measurements of perceived audio quality", 2001
  15. Seonggyoon Park, "A Study on Real-Time Loudness Metering Algorithm for Digital Broadcasting", Journal of KEES, vol.16, No.4, pp.427-438, 2005