• 제목/요약/키워드: pitch bearing

검색결과 73건 처리시간 0.025초

기본임무를 수행하는 기동헬기에 적용될 무베어링 허브 복합재 구성품 피로수명 해석 (Bearingless Rotor Hub Composite Component Fatigue Analysis of Utility Helicopter to perform the Basic Mission)

  • 김태주;기영중;김덕관;김승호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.383-389
    • /
    • 2013
  • Rotor system is a very important part which produces lift, thrust and control force in helicopter. Component of rotor system must endure various flight load for the required life. In helicopter rotor system, bearingless rotor system is the highest technology rotor system compare with articulated and hingeless rotor system. Baaringless rotor system is not include mechanical flap hinge, lag hinge and pitch bearing. Bearingless rotor component flexbeam which made by composite material has conduct hinge and bearing role instead of mechanical flap hinge, lag hinge and pitch bearing. These characteristics has less part number and lass weight than others. In this paper, conduct safe life analysis of bearingless composite component flexbeam and torque tube applying to utility helicopter load condition.

  • PDF

응력해석을 통한 풍력 발전기용 피치/요 베어링 설계 검증 (Design evaluation of wind turbine pitch/yaw bearings by contact stress analysis)

  • 가재원;김재동;남용윤;임채환;박영준;방제성;이영신
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.43.2-43.2
    • /
    • 2011
  • Wind turbine pitch/yaw bearings are relatively big and have different operating conditions like very heavy load to support compared with widely used industrial bearings. Once pitch/yaw bearings failed, according to their special surroundings, serious damages like higher repair costs and additional costs by stopped electricity generation are occur. Therefore, pitch/yaw bearings must be designed to have enough strength and fatigue life under actual operating conditions. In this study, with finite element analysis, it was investigated that stress distribution between rolling elements and raceway and comparatively analyzed using widely used guideline (NREL DG03). Design parameters of wind turbine pitch/yaw bearings are also analyzed, and it could be used as reference for the large bearing design field.

  • PDF

회전 구동용 헤드 슬라이더의 부상높이에 관한 연구 (A Study on Flying Height of Head Slider in Rotary Type Actuator)

  • 이재헌;최동훈;윤상준;김광식
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1886-1896
    • /
    • 1991
  • 본 연구에서는 부상높이를 예측할 수 있는 방법을 개발하고 연관된 변수들의 변동에 따른 부상높이를 검토함으로써 불안정한 극소 공기막 형성시 유발되는 자기헤 드와 하드 디스크간 정보손실 및 하드 디스크의 표면손상을 막고 고성능 자기기억장치 설계에 도움이 되고자 한다.

자동차 휠 베어링 유닛의 장수명 설계 (A Design of an Automotive Wheel Bearing Unit for Long Life)

  • 윤기찬;최동훈
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.319-328
    • /
    • 2000
  • This paper presents a new design method of the 1 generation wheel bearing unit using a numerical optimization technique in order to increase bearing fatigue life. For calculating the fatigue life, a method of load analysis is studied on the automotive wheel bearing system. The design variables selected are ball size, initial contact angle, number of balls, pitch diameter, pre-load, and distance between ball centers. The method of feasible directions in ADS (Automated Design Synthesis) is utilized to automatically find the optimum design variables. To validate the design method, a computer program is developed and applied to a practical passenger car model. The optimum design results demonstrated the effectiveness of the proposed design method showing that the system life of the optimally designed wheel bearing unit is enhanced in comparison with that of the initial ones within the given available design space.

메인 베어링 강성이 풍력발전기용 3점 지지 드라이브 트레인의 기어박스에 미치는 영향 (The Influence of Main Bearing Stiffness on the Gearbox of 3 Point Suspension Wind Turbine Drive Train)

  • 남주석;남용윤
    • 한국생산제조학회지
    • /
    • 제24권3호
    • /
    • pp.278-286
    • /
    • 2015
  • The effects of the main bearing stiffness combined with vertical non-torque force on the input load and shaft deflection of a gearbox were investigated for the three-point suspension drive train of a wind turbine. A finite element analysis model for the drive train was studied experimentally, and its applicability to the present study was verified. The results show that, as the main bearing stiffness is increased, the input load of the gearbox decreases, whereas the input shaft deflection increases. The stiffness component for the pitch moment has the largest influence on the gearbox input load. Although the gearbox life increases at a higher main bearing stiffness, the economic efficiency and durability of the entire drive train system should also be considered in the selection of the main bearing stiffness.

트랙탐색 안정성과 베어링 강성 향상을 위한 공기윤활 슬라이더 베어링의 최적설계 (A Design of Air-Lubricated Slider Bearings for Improving the Flying Stability in Track Seek and Increasing the Air-Bearing Stiffness)

  • 강태식;박노열;이성창;최동훈;정태건
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1561-1569
    • /
    • 2000
  • Flying attitudes of the slider, which are flying height, pitch and roll, are affected by the air flow velocity, the skew angle, and the manufacturing tolerances. Traditional designs of the air bearing surface have considered only the flying performances for the variations in the air flow velocity and the skew angle, which are determined by the radial position. In this study, we present the new shape design of the air bearing surface by considering the track seek performance and the air bearing stiffness as well as the traditional design requirements. The optimization technique is used to improve the dynamic characteristics and operating performance of the newly proposed air bearing surface shape design further. The optimized configuration is obtained automatically and the optimally designed sliders show the enhanced flying and dynamic characteristics.

  • PDF

SA 기법을 이용한 광디스크 드라이브 공기베어링 슬라이더의 최적설계 (The Optimal Design of Air Bearing Sliders of Optical Disk Drives by Using Simulated Annealing Technique)

  • 장혁;김현기;김광선;임경화
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.316-321
    • /
    • 2001
  • The optical storage device has recently experienced significant improvement, especially for the aspects of high capacity and fast transfer rate. However, it is necessary to study a new shape of air bearing surface for the rotary type actuator because the optical storage device has the lower access time than that of HDD (Hard Disk Drives). In this study, we proposed the air bearing shape by using SA (Simulated Annealing) algorithm which is very effective to achieve the global optimum instead of many local optimums. The objective of optimization is to minimize the deviation in flying height from a target value 100nm. In addition, the pitch and roll angle should be maintained within the operation limits.

  • PDF

Investigations on the bearing strength of stainless steel bolted plates under in-plane tension

  • Kiymaz, G.
    • Steel and Composite Structures
    • /
    • 제9권2호
    • /
    • pp.173-189
    • /
    • 2009
  • This paper presents a study on the behavior and design of bolted stainless steel plates under in-plane tension. Using an experimentally validated finite element (FE) program strength of stainless steel bolted plates under tension is examined with an emphasis on plate bearing mode of failure. A numerical parametric study was carried out which includes examining the behavior of stainless steel plate models with various proportions, bolt locations and in two different material grades. The models were designed to fail particularly in bolt tear-out and material piling-up modes. In the numerical simulation of the models, non-linear stress-strain material behavior of stainless steel was considered by using expressions which represent the full range of strains up to the ultimate tensile strain. Using the results of the parametric study, the effect of variations in bolt positions, such as end and edge distance and bolt pitch distance on bearing resistance of stainless steel bolted plates under in-plane tension has been investigated. Finally, the results obtained are critically examined using design estimations of the currently available international design guidance.

부상특성 향상을 위한 극소 공기윤활막을 지닌 헤드 슬라이더의 형상 최적 설계 (Optimum Design of Head Slider with Ultra-Thin Air-Lubricated Spacing for Enhanced Flying Characteristics)

  • 강태식;최동훈;정태건;박노열;이성창
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.725-733
    • /
    • 2001
  • Flying attitudes of the slider, which are flying height, pitch and roll, are affected by the air flow velocity, the skew angle, and the manufacturing tolerances. Traditional designs of the air bearing surface have considered only the flying performances for the variations in the air flow velocity and the skew angle, which are determined by the radial position. In this study, we present the new shape design of the air bearing surface by considering the track seek performance and the air bearing stiffness as well as the traditional design requirements. The optimization technique is used to improve the dynamic characteristics and operating performance of the newly proposed air bearing surface shape design further. The optimized configuration is obtained automatically and the optimally designed sliders show the enhanced flying and dynamic characteristics.