• Title/Summary/Keyword: piping integrity

Search Result 204, Processing Time 0.028 seconds

Verification Test for Primary Reactor Piping in Nuclear Power Plant (원자로 주 배관계의 진동 건전성 시험)

  • Kim, Yeon-Whan;Kim, Hee-Su;Koo, Jae-Raeyang;Bea, Yong-Chae;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.74-79
    • /
    • 2002
  • The piping verification tests were performed in order to verify the structural integrity during initial operation of the reactor coolant systems and the primary heat transportation systems of nuclear power plants by KEPRI in Korea. The tests were conducted at full operating temperature and pressure. The objective is to evaluate the possibility of excessive load generating on piping, piping supports, and reactor structures etc. in the steady normal operation and expected pump transient conditions. As a result, the measured vibrations have been shown acceptable level according to ASME/ANSI OMa-Standard, Part 3.

  • PDF

Verification Test for Primary Reactor Piping in Nuclear Power Plant (원자로 주 배관계의 진동 건전성 시험)

  • Kim, Yeon-Whan;Kim, Hee-Su;Koo, Jae-Raeyang;Bea, Yong-Chae;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.315.1-315
    • /
    • 2002
  • The piping verification tests were performed in order to verify the structural integrity during initial operation of the reactor coolant systems and the primary heat transportation systems of nuclear power plants by KEPRI in Korea. The tests were conducted at full operating temperature and pressure. The objective is to evaluate the possibility of excessive load generating on piping, piping supports, and reactor structures etc. in the steady normal operation and expected pump transient conditions. (omitted)

  • PDF

Development of Nuclear Piping Integriry Expert System (II) -System Development and Case Studies- (원자력배관 건전성평가 전문가시스템 개발(II) -시스템 개발 및 사례해석-)

  • Jeon, Hyeon-Gyu;Heo, Nam-Su;Kim, Yeong-Jin;Park, Yun-Won;Choe, Yeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.1015-1022
    • /
    • 2001
  • The objective of this paper is to develop an expert system called NPIES for nuclear piping integrity. This paper describes the structure and the development strategy of the NPIES system. The NPIES system consists of 3 part; the data input part, the analysis part and the output part. The data input part consists of the material properties database module and the suer interface module. The analysis part consists of the LEFM, CDFD, J/T, limit load modules and the 12 analysis routines for different cracks and loading conditions are provided respectively. Analysis results are presented to screen, printer and text file in the output part. Several case studies on circumferentially cracked piping were performed to evaluate the accuracy and the usefulness of the code. Maximum piping loads predicted by the NPIES system agreed well with those by the 3-dimensional finite element analysis. In addition, even if the material properties were not fully given, the NPIES system provided reasonable evaluation results with the predicted material properties inferred from the material properties database module.

FUZZY SUPPORT VECTOR REGRESSION MODEL FOR THE CALCULATION OF THE COLLAPSE MOMENT FOR WALL-THINNED PIPES

  • Yang, Heon-Young;Na, Man-Gyun;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.607-614
    • /
    • 2008
  • Since pipes with wall-thinning defects can collapse at fluid pressure that are lower than expected, the collapse moment of wall-thinned pipes should be determined accurately for the safety of nuclear power plants. Wall-thinning defects, which are mostly found in pipe bends and elbows, are mainly caused by flow-accelerated corrosion. This lowers the failure pressure, load-carrying capacity, deformation ability, and fatigue resistance of pipe bends and elbows. This paper offers a support vector regression (SVR) model further enhanced with a fuzzy algorithm for calculation of the collapse moment and for evaluating the integrity of wall-thinned piping systems. The fuzzy support vector regression (FSVR) model is applied to numerical data obtained from finite element analyses of piping systems with wall-thinning defects. In this paper, three FSVR models are developed, respectively, for three data sets divided into extrados, intrados, and crown defects corresponding to three different defect locations. It is known that FSVR models are sufficiently accurate for an integrity evaluation of piping systems from laser or ultrasonic measurements of wall-thinning defects.

The Study of Visual Tool for Automated Ultrasonic Examination of the Piping Welds in NPP (자동 초음파 신호평가를 위한 비쥬얼도구에 관한 연구)

  • Yoo, Hyun Joo;Choi, Sung Nam;Kim, Hyung Nam;Lee, Hee Jong
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • This paper describes the Visual Tool for automatic ultrasonic examination that is under developing as a part of the project for development of automatic ultrasonic wave acquisition and analysis program. This tool that is supported by various image processing techniques will be adopted to detect the flaws in the component and piping welds in NPP. Visual Tool will enhance the integrity of nuclear power plant. The object of this paper is to address the Visual Tool which is developing for automatic ultrasonic inspection of welds in NPP.

  • PDF

Status of Inspection and Management for Nuclear Power Plants Snubbers (원전 방진기 검사 및 관리 현황)

  • Cho, Yong-Bae;Moon, Gyoon-young;Yoo, Hyun-Joo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.20-24
    • /
    • 2014
  • Recently, it is getting more and more important ensuring the integrity for the equipment degradation according to the increase of nuclear power plant operating period. In many equipment of the nuclear power plant, snubbers mainly installed in reactor coolant pumps, steam generators and piping protected the equipment and piping from the occurrence of transient dynamic loads such as the earthquake, thermal load during the plant operation. This report describes the function, regulation, inspection requirements and management status of the snubbers installed in domestic nuclear power plants.

Complex Leakage Probability Evaluation of Nuclear Pipes by Fatigue and Stress Corrosion Cracking (피로 및 응력부식균열에 의한 원전 배관의 복합누설확률 평가)

  • Kim, Seung Hyun;Goni, Nasimul;Chang, Yoon-Suk;Jang, Changheui
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.25-30
    • /
    • 2015
  • In the present study, complex leakage probabilities of nuclear pipes due to fatigue and stress corrosion cracking are evaluated by using the PINTIN(Piping INTegrity INner flaws) that is developed based on the existing PRAISE(Piping Reliability Analysis Including Seismic Events) program. With regard to the aging and crack instability, small leak and big leak probabilities are calculated for several pipes in a reactor coolant system of domestic nuclear plant. Moreover, sensitivity analysis is also performed to find out the effect of parameters for the leakage of pipes, which shows the coolant temperature is the most influencing parameter.

A Stress Analysis of Wall-Thinned Feedwater Ring in Nuclear Power Plant (원전 증기발생기 감육 급수링 응력해석)

  • Min Ki Cho;Ki Hyun Cho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.56-63
    • /
    • 2021
  • The feedwater ring is an assembly in steam generator internal piping, which distributes feedwater into the secondary side of the steam generator. It consists of an assembly of carbon steel piping, pipe fittings and J-nozzles which are inserted into the top of the feedwater ring and welded to the diameter of the ring. The feedwater ring at the attachment region of the J-nozzle may be susceptible to flow accelerated corrosion (FAC) due to flow turbulence which increases local fluid velocities. If a J-nozzle becomes a loose part, it can cause damage to tubing near the tube sheet. In this paper, the structural stress analysis for a wall thinned feedwater ring and integrity evaluations under assumed loading conditions are carried out in compliance with ASME B&PV SecIII, NB-3200.

PFM APPLICATION FOR THE PWSCC INTEGRITY OF Ni-BASE ALLOY WELDS-DEVELOPMENT AND APPLICATION OF PINEP-PWSCC

  • Hong, Jong-Dae;Jang, Changheui;Kim, Tae Soon
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.961-970
    • /
    • 2012
  • Often, probabilistic fracture mechanics (PFM) approaches have been adopted to quantify the failure probabilities of Ni-base alloy components, especially due to primary water stress corrosion cracking (PWSCC), in a primary piping system of pressurized water reactors. In this paper, the key features of an advanced PFM code, PINEP-PWSCC (Probabilistic INtegrity Evaluation for nuclear Piping-PWSCC) for such purpose, are described. In developing the code, we adopted most recent research results and advanced models in calculation modules such as PWSCC crack initiation and growth models, a performance-based probability of detection (POD) model for Ni-base alloy welds, and so on. To verify the code, the failure probabilities for various Alloy 182 welds locations were evaluated and compared with field experience and other PFM codes. Finally, the effects of pre-existing crack, weld repair, and POD models on failure probability were evaluated to demonstrate the applicability of PINEP-PWSCC.