Considering Japan's Greenhouse Gas (GHG) emissions reduction target for Fiscal Year (FY) 2030, the Joint Crediting Mechanism (JCM) was analyzed in order to estimate its significant contribution to Japan's Nationally Determined Contribution (NDC) and check its availability as a new mechanism to achieve Korea's 2030 mitigation target of 11.3% using carbon credits from international market mechanisms. The total budget for JCM Model Projects (1.2 billion JPY/yr) and JCM REDD+ Model Projects (0.8 billion JPY/yr), which are expected to deliver at least 50% of issued credits to Japan, is estimated about 21.6 billion JPY by the year 2030. This budget is about one third of the purchase of carbon credits from international carbon markets. So far, JCM credits of $378tCO_2-eq$. have been allocated to Japan, which are about 77% of the total issued credit through five-JCM Model Projects implemented from the year 2014. It is expected that Japan will obtain about $0.5MtCO_2-eq$. credits more from 100-ongoing JCM Projects, which are only 1% of Japan's NDC target through JCM credits. With regard to regular issued credits from implemented projects, expected new issued credits from pipeline projects and the less budget for JCM implementation as compared to purchasing carbon credits, JCM credits can be reached a resonable level of Japan's NDC target of $50{\times}100MtCO_2-eq$. through JCM until FY 2030.
Journal of Korea Society of Industrial Information Systems
/
v.28
no.4
/
pp.11-19
/
2023
The paper proposes a smart mirror system that recommends fragrances based on user emotion analysis. This paper combines natural language processing techniques such as embedding techniques (CounterVectorizer and TF-IDF) and machine learning classification models (DecisionTree, SVM, RandomForest, SGD Classifier) to build a model and compares the results. After the comparison, the paper constructs a personal emotion-based fragrance recommendation mirror model based on the SVM and word embedding pipeline-based emotion classifier model with the highest performance. The proposed system implements a personalized fragrance recommendation mirror based on emotion analysis, providing web services using the Flask web framework. This paper uses the Google Speech Cloud API to recognize users' voices and use speech-to-text (STT) to convert voice-transcribed text data. The proposed system provides users with information about weather, humidity, location, quotes, time, and schedule management.
Recently, consumers have shown an increasing tendency to seek information related to environmental, social, and governance (ESG) aspects in order to choose products with higher social value and environmental friendliness. In this paper, we proposes a product recommendation system applying ESG indicators tailored to the recent consumer trend of value-based consumption, utilizing a model called MultiSAGE that combines GraphSAGE and GAT. To achieve this, ESG rating data for 1,033 companies in 2022 collected from the Korea ESG Standard Institute and actual product data from N companies were transformed into a Heterogeneous Graph format through a data processing pipeline. The MultiSAGE model was then applied in machine learning to implement a recommendation system that, given a specific product, suggests eco-friendly alternatives. The implementation results indicate that consumers can easily compare and purchase products with ESG indicators applied, and it is anticipated that this system will be utilized in recommending products with social value and environmental friendliness.
As an advanced study on the method of calculating the target revenue water ratio of local waterworks through the leakage component analysis method proposed by Kim et al. (2022), this study developed a model to calculate the achievable revenue water ratio within the specified project cost, the required project cost to achieve the specified target revenue water ratio, and the economically appropriate target revenue water ratio level by considering the leakage reduction cost and leakage reduction benefit for each revenue water ratio improvement strategy, and conducted an applicability evaluation of the developed model using actual field data. The procedure for calculating the target revenue water ratio of local waterworks considering economics proposed in this study consists of three stages: physical data linkage model construction, leakage component analysis, and economic analysis, and the applicability was evaluated for Zone H with branch type and the Zone M network type. As a result of the application, it was calculated that approximately 32.5 billion won would be required to achieve the target revenue water ratio of 70% in the Zone H, and approximately KRW 10.5 billion would be required to achieve the target revenue water ratio of 75% in the Zone M. If the business scale of Zones H and M was corrected to 10,000 m3/day of water usage, the required project cost for a 1% improvement in the revenue water ratio of Zone H was calculated to be 0.7642 billion won and 0.4715 billion won for Zone M.
In this study, a damage estimation model for water distribution system was developed to quantitatively calculate the cumulative damage of water distribution system. And it was applied to real water distribution system to analyze the cumulative damage of water distribution system. To analyze the overall damage rate of the water distribution system, the cumulative damage analysis formula of individual pipes was established. And the aging index that affects the damage rate was analyzed using MCS (Monte Carlo Simulation), and Romanoff's measured data was used to calculate the thickness change due to corrosion. In addition, a cumulative damage estimation model was applied to unit network such as small and medium block network, and the cumulative damage of the unit network for up to 50 years was calculated. From the results, it was found that the cumulative damage rate is increased from 7% to 79% for the water distribution system of Naeduk 1-dong, Cheongju City, as the age of the pipeline is increased from 20 years to 50 years.
Jong Hyun Shin;Sun Ju Kim;Gwanghun Kim;Hang-Rae Kim;Kwan Soo Ko
Journal of Microbiology and Biotechnology
/
v.34
no.10
/
pp.2033-2040
/
2024
Deep learning presents a promising approach to complex biological classifications, contingent upon the availability of well-curated datasets. This study addresses the challenge of analyzing three-dimensional protein structures by introducing a novel pipeline that utilizes open-source tools to convert protein structures into a format amenable to computational analysis. Applying a two-dimensional convolutional neural network (CNN) to a dataset of 12,143 avian influenza virus genomes from 64 countries, encompassing 119 hemagglutinin (HA) and neuraminidase (NA) types, we achieved significant classification accuracy. The pathogenicity was determined based on the presence of H5 or H7 subtypes, and our models, ranging from zero to six mid-layers, indicated that a four-layer model most effectively identified highly pathogenic strains, with accuracies over 0.9. To enhance our approach, we incorporated Principal Component Analysis (PCA) for dimensionality reduction and one-class SVM for abnormality detection, improving model robustness through bootstrapping. Furthermore, the K-nearest neighbor (K-NN) algorithm was fine-tuned via hyperparameter optimization to corroborate the findings. The PCA identified distinct clustering for pathogenic HA, yielding an AUC of up to 0.85. The optimized K-NN model demonstrated an impressive accuracy between 0.96 and 0.97. These combined methodologies underscore our deep learning framework's capacity for rapid and precise identification of pathogenic avian influenza strains, thus providing a critical tool for managing global avian influenza threats.
A demand of marine outfall system has been much increased for the effective disposal of the wastewater due to population and industrial development at the coastal areas. The outfall system discharges primary or secondary treated effluent into the coastline, or at the deep water, or between these two. The discharge is carried out by constructing a pipeline on the sea bed with a diffuser or with a tunnel, risers and appropriate. The effluent, which has a density similar to that of fresh water, rises to the sea surface forming plume or jet, together with entraining the surrounding salt water and becomes very dilute. Thus there have been growing interests about plume behaviour around the outfall system. Plume or jet discharged from single-port or multi-port diffuser might cause certain impacts on coastal environment. Near field mixing characteristics of discharged water field using CORMIX model have been studied for effective outfall design various conditions on ambient current, depth, flow rate, effluent concentration, diffuser specification, port specification etc.. This kind of analysis is necessary to deal with water quality problems caused by the ocean discharge. The analyzed result was applied to the Pusan Jungang effluent outfall system plan.
The present work develops an expert system for detecting and predicting the crude oil types and properties at normal temperature ${\theta}=25^{\circ}C$, by evaluating the dielectric properties of the fluid transfused inside glass fiber reinforced epoxy (GFRE) composite pipelines, by using electrical capacitance sensor (ECS) technique, then used the data measurements from ECS to predict the types of the other crude oil transfused inside the pipeline, by designing an efficient artificial neural network (ANN) architecture. The variation in the dielectric signatures are employed to design an electrical capacitance sensor (ECS) with high sensitivity to detect such problem. ECS consists of 12 electrodes mounted on the outer surface of the pipe. A finite element (FE) simulation model is developed to measure the capacitance values and node potential distribution of ECS electrodes by ANSYS and MATLAB, which are combined to simulate sensor characteristic. Radial Basis neural network (RBNN), structure is applied, trained and tested to predict the finite element (FE) results of crude oil types transfused inside (GFRE) pipe under room temperature using MATLAB neural network toolbox. The FE results are in excellent agreement with an RBNN results, thus validating the accuracy and reliability of the proposed technique.
Transactions of the Korean Society of Mechanical Engineers B
/
v.27
no.8
/
pp.1071-1080
/
2003
A national standard system was developed in order to calibrate and test the oil flowmeters for the petroleum field. A stop valve and a gyroscopic weighing scale were employed for the primary standard of the flow quantity. It is operated by the standing start and finish mode and the static weighing method. The model equation for uncertainty evaluation was based on the calibration principle of standard system. The sources of the uncertainties were quantified and combined according to the GUM(Guide to the Expression of Uncertainty in Measurement). It was found that the standard system had the relative expanded uncertainty of 0.04 % in the range of 18 - 350 ㎥/h. According to the uncertainty budget, the uncertainties of the fluid density and the volume of pipeline, which were temperature dependent, contributed 92% of final uncertainty in the oil flow standard system.
Park, Yeong-Su;Kim, Woo-Hyun;Keel, Sang-In;Yun, Jin-Han;Min, Tai-Jin;Roh, Seon-Ah
한국신재생에너지학회:학술대회논문집
/
2008.05a
/
pp.247-250
/
2008
Biomass gasification is a promising technology for producing a fuel gas which is useful for power generation systems. In biomass gasification processes, tar formation often causes some problems such as pipeline plugging. Thus, proper tar treatment is necessary. So far, nickel (Ni)-based catalysts have been intensively studied for the catalytic tar removal. However, the deactivation of Ni-based catalysts takes place because of coke deposition and sintering of Ni metal particles. To overcome these problems, we have been using ruthenium (Ru)-based catalyst for tar removal. It is reported by Okada et al., that a Ru/$Al_2O_3$ catalyst is very effective for preventing the carbon deposition during the steam reforming of hydrocarbons. Also, this catalyst is more active than the Ni-based catalyst at a low steam to carbon ratio (S/C). Benzene was used for the tar model compound because it is the main constituent of biomass tar and also because it represents a stable aromatic structure apparent in tar formed in biomass gasification processes. The steam reforming process transforms hydrocarbons into gaseous mixtures constituted of carbon dioxide ($CO_2$), carbon monoxide (CO), methane ($CH_4$) and hydrogen ($H_2$).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.