• Title/Summary/Keyword: pipeline model

Search Result 402, Processing Time 0.024 seconds

Propagation Characteristics of Pressure Pulse of Unsteady Flow in n Hydraulic Pipeline (유압관로에서 비정상유동의 압력전파특성)

  • Yu, Yeong-Tae;Na, Gi-Dae;Kim, Ji-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • Flow of fluid has been studied in various fields of fluid engineering. To hydraulic engineers, the unsteady flow such as pulsation and liquid hammering in pipes has been considered as a serious trouble. So we are supposed to approach the formalized mathematical model by using more exact momentum equation for fluid transmission lines. Most of recent studies fur pipe line have been studied without considerations of variation of viscosity and temperature, which are the main factors of pressure loss causing the friction of fluid inside pipe line. Frequency response experiments are carried out with use of a rotary sinusoidal flow generator to investigate wave equation take into account viscosity and temperature. But we observed that measured value of gains are reduced as temperature increased. And it was respectively observed that the measured value of gains are reduced and line width of gain is broadened out, when temperature was high in the same condition. As we confessed, pressure loss and phase delay are closely related with the length, diameter and temperature of pipe line. In addition, they are the most important factors, when we decide the momentum energy of working fluid.

Stability of onshore pipelines in liquefied soils: Overview of computational methods

  • Castiglia, Massimina;de Magistris, Filippo Santucci;Napolitano, Agostino
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.355-366
    • /
    • 2018
  • One of the significant problems in the design of onshore pipelines in seismic areas is their stability in case of liquefaction. Several model tests and numerical analyses allow investigating the behavior of pipelines when the phenomenon of liquefaction occurs. While experimental tests contribute significantly toward understanding the liquefaction mechanism, they are costly to perform compared to numerical analyses; on the other hand, numerical analyses are difficult to execute, because of the complexity of the soil behavior in case of liquefaction. This paper reports an overview of the existing computational methods to evaluate the stability of onshore pipelines in liquefied soils, with particular attention to the development of excess pore water pressures and the floatation of buried structures. The review includes the illustration of the mechanism of floating and the description of the available calculation methods that are classified in static and dynamic approaches. We also highlighted recent trends in numerical analyses. Moreover, for the static condition, referring to the American Petroleum Institute (API) Specification, we computed and compared the uplift safety factors in different cases that might have a relevant practical use.

Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM

  • Eltaher, Mohamed A.;Attia, Mohamed A.;Soliman, Ahmed E.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.97-111
    • /
    • 2018
  • Cracking can lead to unexpected sudden failure of normally ductile metals subjected to a tensile stress, especially at elevated temperature. This article is raised to study the application of a composite material instead of the traditional carbon steel material used in the natural gas transmission pipeline because the cracks occurs in the pipeline initiate at its internal surface which is subjected to internal high fluctuated pressure and unsteady temperature according to actual operation conditions. Functionally graded material (FGM) is proposed to benefit from the ceramics durability and its surface hardness against erosion. FGM properties are graded at the radial direction. Finite element method (FEM) is applied and solved by ABAQUS software including FORTRAN subroutines adapted for this case of study. The stress intensity factor (SIF), temperatures and stresses are discussed to obtain the optimum FGM configuration under the actual conditions of pressure and temperature. Thermoelastic analysis of a plane strain model is adopted to study SIF and material response at various crack depths.

Forecasting Methane Gas Concentration of LFG Power Plant Using Deep Learning (딥러닝 기법을 활용한 매립가스 발전소 포집공의 메탄가스 농도 예측)

  • Won, Seung-hyun;Seo, Dae-ho;Park, Dae-won
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.649-659
    • /
    • 2018
  • In this study, after operational data for a landfill gas power plant were collected, the methane gas concentration was predicted using a deep learning method. Concentrations of methane gas, carbon dioxide, hydrogen sulfide, oxygen concentration, as well as data related to the valve opening degree, air temperature and humidity were collected from 23 pipeline bases for 88 matches from January to November 2017. After the deep learning model learned the collected data, methane gas concentration was estimated by applying other data. Our study yielded extremely accurate estimation results for all of the 23 pipeline bases.

Development of dynamic motion models of SPACE code for ocean nuclear reactor analysis

  • Kim, Byoung Jae;Lee, Seung Wook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.888-895
    • /
    • 2022
  • Lately, ocean nuclear power plants have attracted attention as one of diverse uses of nuclear power plants. Because ocean nuclear power plants are movable or transportable, it is necessary to analyze the thermal hydraulics in a moving frame of reference, and computer codes have been developed to predict thermal hydraulics in large moving systems. The purpose of this study is to incorporate a three dimensional dynamic motion model into the SPACE code (Safety and Performance Analysis CodE) so that the code is able to analyze thermal hydraulics in an ocean nuclear power plant. A rotation system that describes three-dimensional rotations about an arbitrary axis was implemented, and modifications were made to the one-dimensional momentum equations to reflect the rectilinear and rotational acceleration effects. To demonstrate the code's ability to solve a problem utilizing a rotational frame of reference, code calculations were conducted on various conceptual problems in the two-dimensional and three-dimensional pipeline loops. In particular, the code results for the three-dimensional pipeline loop with a tilted rotation axis agreed well with the multi-dimensional CFD results.

Optimized patch feature extraction using CNN for emotion recognition (감정 인식을 위해 CNN을 사용한 최적화된 패치 특징 추출)

  • Irfan Haider;Aera kim;Guee-Sang Lee;Soo-Hyung Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.510-512
    • /
    • 2023
  • In order to enhance a model's capability for detecting facial expressions, this research suggests a pipeline that makes use of the GradCAM component. The patching module and the pseudo-labeling module make up the pipeline. The patching component takes the original face image and divides it into four equal parts. These parts are then each input into a 2Dconvolutional layer to produce a feature vector. Each picture segment is assigned a weight token using GradCAM in the pseudo-labeling module, and this token is then merged with the feature vector using principal component analysis. A convolutional neural network based on transfer learning technique is then utilized to extract the deep features. This technique applied on a public dataset MMI and achieved a validation accuracy of 96.06% which is showing the effectiveness of our method.

Efficient Determination of Genomic Variants from Sorghum Genetic Resources by HPC

  • Tae-Ho Lee;Myung-Eun Park;Yun-Ho Oh;Da-Hye Jeon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.241-241
    • /
    • 2022
  • In the digital age, a lot of agricultural R&D is based on data. However, genetic resources are still essential for basic research and agricultural development. Accordingly, many countries are making great efforts to secure various genetic resources. In Korea, the National Agrobiodiversity Center (NAC) has more than 270,000 plant genetic resources so far as part of its efforts. In order to efficiently use the resources for agricultural R&D, it is essential to determine the genotypes of the resources. For this, it is essential to build a system for mass genotyping. For this, sorghum were selected as a model crop considering the genome size, the high-quality reference genome, and the number of resources. To efficiently determine the genotype data from many genetic resources, we developed a GATK pipeline that works efficiently on HPC. The pipeline efficiently and rapidly determined 769 genotypes of 410 genetic resources. Going forward, our team will continue to work to determine genotypes of over a thousand sorghum resources, and the data will be released at the National Agricultural Biotechnology Information Center (NABIC) in order to be used in agricultural R&D.

  • PDF

The Development of Dynamic Model for Long-Term Simulation in Water Distribution Systems (상수관망시스템에서의 장기간 모의를 위한 동역학적 모형의 개발)

  • Park, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.325-334
    • /
    • 2007
  • In this study, a long-term unsteady simulation model has been developed using rigid water column theory which is more accurate than Extended-period model and more efficient comparing with water-hammer simulation model. The developed model is applied to 24-hours unsteady simulation considering daily water-demand and water-hammer analysis caused by closing a valve. For the case of 24-hours daily simulation, the pressure of each node decreases as the water demand increase, and when the water demand decrease, the pressure increases. During the simulation, the amplitudes of flow and pressure variation are different in each node and the pattern of flow variation as well as water demand is quite different than that of KYPIPE2. Such discrepancy necessitates the development of unsteady flow analysis model in water distribution network system. When the model is applied to water-hammer analysis, the pressure and flow variation occurred simultaneously through the entire network system by neglecting the compressibility of water. Although water-hammer model shows the lag of travel time due to fluid elasticity, in the aspect of pressure and flow fluctuation, the trend of overall variation and quantity of the result are similar to that of water-hammer model. This model is expected for the analysis of gradual long-term unsteady flow variations providing computational accuracy and efficiency as well as identifying pollutant dispersion, pressure control, leakage reduction corresponding to flow-demand pattern, and management of long-term pipeline net work systems related with flowrate and pressure variation in pipeline network systems

A Design of a Mobile Graphics Accelerator based on OpenVG 1.0 API

  • Kwak, Jae-Chang;Lee, Kwang-Yeob
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.289-293
    • /
    • 2008
  • In this paper, we propose the hardware architecture to accelerate 2D Vector graphics process for mobile devices. we propose the Transformation Unit Architecture that considerates the operation dependency. It has 3 cycles excution time and uses 2 multipliers and 2 adders. Proposed paint generation unit uses a LUT method, so it does not execute color interpolation which needs to be calculated every time. The proposed OpenVG 1.0 Accelerator achieved a 2.85 times faster performance in a tiger model.

Instruction-level Power Model for Asynchronous Processor, A8051 (비동기식 프로세서 A8051의 명령어 레벨 소비 전력 모델)

  • Lee, Je-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.7
    • /
    • pp.11-20
    • /
    • 2012
  • This paper presents new instruction-level power model for an asynchronous processor, A8051. Even though the proposed model estimates power consumption as instruction level, this model reflects the behavioral features of asynchronous pipeline during the program is executed. Thus, it can effectively enhance the accuracy of power model for an asynchronous embedded processor without significant complexity of power model as well as the increase of simulation time. The proposed power model is based on the implementation of A8051 to reflect the characteristics of power consumption in A8051. The simulation results of the proposed model is compared with that of gate-level synthesized A8051. The proposed power model shows the accuracy of 94% and the simulation time for estimation the power consumption was reduced to 1,600 times.