• Title/Summary/Keyword: pipeline model

Search Result 402, Processing Time 0.022 seconds

Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles using DQ and Newmark methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.717-726
    • /
    • 2018
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that $SiO_2$ nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as $SiO_2$ nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of $SiO_2$ nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

Earthquake response of nanocomposite concrete pipes conveying and immersing in fluid using numerical methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.125-135
    • /
    • 2019
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that SiO2 nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as SiO2 nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of SiO2 nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

Interactive Colision Detection for Deformable Models using Streaming AABBs

  • Zhang, Xinyu;Kim, Young-J.
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02c
    • /
    • pp.306-317
    • /
    • 2007
  • We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At run-time, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30~100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB culling algorithm [2] and observed about two times improvement.

  • PDF

Comparative Study on Seismic Fragility Curve Derivation Methods of Buried Pipeline Using Finite Element Analysis (유한요소 해석을 활용한 매설 배관의 지진 취약도 곡선 도출 기법 비교)

  • Lee, Seungjun;Yoon, Sungsik;Song, Hyeonsung;Lee, Jinmi;Lee, Young-Joo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.213-220
    • /
    • 2023
  • Seismic fragility curves play a crucial role in assessing potential seismic losses and predicting structural damage caused by earthquakes. This study compares non-sampling-based methods of seismic fragility curve derivation, particularly the probabilistic seismic demand model (PSDM) and finite element reliability analysis (FERA), both of which require employing sophisticated finite element analysis to evaluate and predict structural damage caused by earthquakes. In this study, a three-dimensional finite element model of API 5L X65, a buried gas pipeline widely used in Korea, is constructed to derive seismic fragility curves. Its seismic vulnerability is assessed using nonlinear time-history analysis. PSDM and a FERA are employed to derive seismic fragility curves for comparison purposes, and the results are verified through a comparison with those from the Monte Carlo Simulation (MCS). It is observed that the fragility curves obtained from PSDM are relatively conservative, which is attributed to the assumption introduced to consider the uncertainty factors. In addition, this study provides a comprehensive comparison of seismic fragility curve derivation methods based on sophisticated finite element analysis, which may contribute to developing more accurate and efficient seismic fragility analysis.

Machine-assisted Semi-Simulation Model (MSSM): Predicting Galactic Baryonic Properties from Their Dark Matter Using A Machine Trained on Hydrodynamic Simulations

  • Jo, Yongseok;Kim, Ji-hoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.55.3-55.3
    • /
    • 2019
  • We present a pipeline to estimate baryonic properties of a galaxy inside a dark matter (DM) halo in DM-only simulations using a machine trained on high-resolution hydrodynamic simulations. As an example, we use the IllustrisTNG hydrodynamic simulation of a (75 h-1 Mpc)3 volume to train our machine to predict e.g., stellar mass and star formation rate in a galaxy-sized halo based purely on its DM content. An extremely randomized tree (ERT) algorithm is used together with multiple novel improvements we introduce here such as a refined error function in machine training and two-stage learning. Aided by these improvements, our model demonstrates a significantly increased accuracy in predicting baryonic properties compared to prior attempts --- in other words, the machine better mimics IllustrisTNG's galaxy-halo correlation. By applying our machine to the MultiDark-Planck DM-only simulation of a large (1 h-1 Gpc)3 volume, we then validate the pipeline that rapidly generates a galaxy catalogue from a DM halo catalogue using the correlations the machine found in IllustrisTNG. We also compare our galaxy catalogue with the ones produced by popular semi-analytic models (SAMs). Our so-called machine-assisted semi-simulation model (MSSM) is shown to be largely compatible with SAMs, and may become a promising method to transplant the baryon physics of galaxy-scale hydrodynamic calculations onto a larger-volume DM-only run. We discuss the benefits that machine-based approaches like this entail, as well as suggestions to raise the scientific potential of such approaches.

  • PDF

A Comparative Study of Ice Scour-Seabed Interaction Models (빙쇄굴-해저지반 상호작용 모델 비교연구)

  • 최경식;이종호
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2002
  • The interaction of grounded ice ridges with underlying seabed is one of the major considerations in the design of Arctic pipeline system. Previously several ice scour models were developed by researchers to describe the ice scour-seabed interaction mechanism. In view of possible improvements, a comparative study of those ice scour models is performed and their limitation in modeling is discussed. Simple laboratory tests are carried out and then the shape pattern of deposited soil around the ice model is newly defined. Unlike the rectangular idealization of an ice block, in this modified ice scour model, trapezoidal cross sections are assumed to represent the typical shape of an ice ridge based on the field observation data. With the horizontal and vertical motion of ice model, the ice scour depth and soil reacting forces on seabed are calculated with varying the keel angle of an ice ridge.

Comparative Study of Ice Gouge Simulation Considering Ice Keel-Seabed Interactions (빙-해저지반 상호작용을 고려한 빙쇄굴 시뮬레이션 비교연구)

  • Shin, Mun-Beom;Park, Dong-Su;Seo, Young-kyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.556-563
    • /
    • 2019
  • The ice keel gouge and seabed interaction is one of the major considerations in the design of an Arctic pipeline system. Ice keel and seabed interaction engineering models based on experimental data, which give an explicit equation for estimating the ice gouging depth, have been suggested. The suggested equations usually overestimate the ice keel gouging depth. In addition, various types of numerical analyses have been carried out to verify the suggested engineering model equations in comparison to the experimental data. However, most of numerical analysis results were also overestimated compared with the laboratory experimental data. In this study, a numerical analysis considering the contact condition and geostatic stress was carried out to predict the ice keel gouging depth and compared with the previous studies. Considering the previously mentioned conditions, more accurate results were produced compared with the laboratory experiment results and the error rate was reduced compared to previous numerical analysis studies.

Design for Environment within Fashion Industry (패션 산업에서의 친환경 디자인)

  • Jang, Nam-Kyung;Kim, Yun-Jung;Joo, Zan-Na
    • The Research Journal of the Costume Culture
    • /
    • v.15 no.6
    • /
    • pp.952-964
    • /
    • 2007
  • This study is about the design for environment which is central social interest in recent days. This study focused on both experimental designs which convey meanings and practical designs which can be produced within the fashion industry and then influence on the wide range of consumer, human and surrounding environment. The purposes of this study are to categorize national and global fashion designs for environment, to analyze data based on the fashion pipeline from planning to discard, to suggest systematic actions, and to establish fashion design for environment model. Through these processes, this study helps in making fashion designs for environment more understandable, and demonstrates one future direction for using environment as fashion industry's innovative strategy. This study attempts to create business and at the same time suggests design actions based on social belief. The results of this study are following. Fashion designs for environment were categorized by organic fabric, new-to-the-world fabric, reduce, multi-function, reproduce, order-made, recycle, and reuse. The results show that fashion designs for environment have been implemented throughout the fashion pipeline, and applied the concepts of design for environment including green, sustainable slow, and natural design principles. Furthermore, labelling and service from supply side, green purchasing from demand side, and integration from both sides are suggested as company's and society's systematic actions.

  • PDF

A Pipeline Network Analysis on the Source and the Relation with Pipe Diameter of the Flow Hunting in a Orifice Meter (오리피스 유량계의 유동헌팅 원인과 배관경과의 상관관계에 대한 배관망해석 연구)

  • Shin, Chang-Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.54-59
    • /
    • 2011
  • Generally, the flow hunting is observed in almost all of the orifice meters but the intensity of the flow hunting is different at each metering system. In order to investigate the relations between pipe diameter and the flow instability or the flow hunting in a real metering system, a one-dimensional pipeline network model was built and analyzed for the examination of flow characteristics and relations to the flow hunting, changing diameters of the meter and the pipes before and after the meter. Finally, the effects of pressuredifference variation and flow hunting following to the variations of the diameters of the meter and the pipes before and after the meter were investigated and the relations were examined as well.

Numerical evaluation of buried composite and steel pipe structures under the effects of gravity

  • Toh, William;Tan, Long Bin;Tse, Kwong Ming;Raju, Karthikayen;Lee, Heow Pueh;Tan, Vincent Beng Chye
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.55-66
    • /
    • 2018
  • In this paper, the response of an underground fibreglass reinforced plastic (FRP) composite pipe system subjected to realistic loading scenarios that may be experienced by an actual buried pipeline is investigated. The model replicates an arbitrary site with a length of buried pipeline, passing through a $90^{\circ}$ bend and into a valve pit. Various loading conditions, which include effects of pipe pressurization, differences in response between stainless steel and fibreglass composite pipes and severe loss of bed-soil support are studied. In addition to pipe response, the resulting soil stresses and ground settlement are also analysed. Furthermore, the locations of potential leakage and burst have also been identified by evaluating the contact pressures at the joints and by comparing stresses to the pipe hoop and axial failure strengths.