• Title/Summary/Keyword: pipeline model

Search Result 402, Processing Time 0.026 seconds

Impact of spatial variability of geotechnical properties on uncertain settlement of frozen soil foundation around an oil pipeline

  • Wang, Tao;Zhou, Guoqing;Wang, Jianzhou;Wang, Di
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • The spatial variability of geotechnical properties can lead to the uncertainty of settlement for frozen soil foundation around the oil pipeline, and it can affect the stability of permafrost foundation. In this paper, the elastic modulus, cohesion, angle of internal friction and poisson ratio are taken as four independent random fields. A stochastic analysis model for the uncertain settlement characteristic of frozen soil foundation around an oil pipeline is presented. The accuracy of the stochastic analysis model is verified by measured data. Considering the different combinations for the coefficient of variation and scale of fluctuation, the influences of spatial variability of geotechnical properties on uncertain settlement are estimated. The results show that the stochastic effects between elastic modulus, cohesion, angle of internal friction and poisson ratio are obviously different. The deformation parameters have a greater influence on stochastic settlement than the strength parameters. The overall variability of settlement reduces with the increase of horizontal scale of fluctuation and vertical scale of fluctuation. These results can improve our understanding of the influences of spatial variability of geotechnical properties on uncertain settlement and provide a theoretical basis for the reliability analysis of pipeline engineering in permafrost regions.

Design of Multi-Regional Water Supply System Based on the Optimization Technique (최적화 기법을 이용한 광역상수도 관로시스템 설계)

  • Kim, Ju Hwan;Kim, Zong Woo;Park, Jae Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.95-112
    • /
    • 1999
  • In this research, it is proposed that optimization method is introduced and applied to the design of pipeline system in multi-regional water supply project, which has been constructed to settle the regional unbalance problems of available water resources. For the purpose, interface programs are developed to integrate linear programming model and KYPIPE model which is used for optimization and hydraulic analysis, respectively. The developed program is applied to the pipeline system design of multi-regional water supply project. The optimal diameters from the application of linear programming technique are compared with those from conventional method that is time-consuming and tedious trail and error process. Since the conventional design largely depends upon the experience of designers and the results of general hydraulic analysis, it can not be reasonable and consistent. The application of linear programming technique can make it possible to design pipeline system optimally by using same design factors of general hydraulic models. The model can select commercial discrete pipe diameter as optimal size by using pipe length as decision variables. The developed model is applied to Pohang multi-regional water supply system design with two different objective functions, which are initial construction cost and annual cost including electric cost. As results, it is calculated that the initial construction cost of 1,449,740 thousand won is saved and annual cost of 128,951 thousand won is saved for a year within study year. Also, the optimal site of pump station is selected on 5th pipe, which is located between the diverging junction to Kangdong(2) province and the diverging junction to Cheonbuk province. It is explained that pump cost is less than pipe cost in this application case study due to little pump station scale. In the case of water supply with large pump capacity, it is reasonal that the increase of pipe size is more efficient instead the increase of pump station capacity to save annual cost.

  • PDF

A Study on the Optimal Operation and Policy of the Boryeong Dam Diverion Pipe Line Using the SWAT Model (SWAT 모형을 이용한 보령댐 도수로 운영 방안 및 정책 연구)

  • Park, Bumsoo;Yoon, Hyo Jik;Hong, Yong Seok;Kim, Sung Pyo
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.546-558
    • /
    • 2020
  • While industrialization has provided in abundance, the pollution it creates has caused untold damage to the environment, increasing the frequency and severity of natural disasters through changes in global climate patterns. The World Risk Forum's (WEF) World Risk Report presented the results of a survey of experts from around the world detailing the most influential risk factors over the next decade. Notably, the failure to respond to climate change ranked first and the global water crisis third. The extreme drought in the western Chungnam province was unexpected in 2016. At the time, the water level of Boryeong Dam was drastically decreased due to receiving less than half the average recorded rainfall in the region that year. The Boryeong Dam diversion pipeline has the capacity to solve the water shortage problem between these two regions by providing water from Geumgang to the western part of Chungnam, including Boryeong City. Current weather trends suggest drought is likely to continue in western Chungnam, which uses the Boryeong Dam as an intake source. This makes it necessary to operate Boryeong Dam diversion pipeline in an efficient and effective manner. SWAT is a watershed scale model developed to predict the impact of land management practices on water. The SWAT model was used in this study to evaluate the adequacy of the Boryeong Dam diversion pipeline operational plan by comparing it to present Boryeong Dam diversion pipeline operation. By investigating the number of days required to reach each reservoir stage, we determined that the number of days required to reach the boundary stage was less than that of the current operation. This determination accounts for the caveats that the Boryeong Dam waterway was not operated and only one pump will be operated from October to May of next year. As our results suggest, the most stable operation scenario is to operate two pumps at all times. This can be accomplished by operating two pumps from the caution stage to increase the number of pumps whenever the stage is raised. In addition to the stable operation of the Boryeong Dam pipeline, policy considerations are required with regard to imposing a water use charge on users of the Boryeong Dam region.

Development of a Failure Probability Model based on Operation Data of Thermal Piping Network in District Heating System (지역난방 열배관망 운영데이터 기반의 파손확률 모델 개발)

  • Kim, Hyoung Seok;Kim, Gye Beom;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.322-331
    • /
    • 2017
  • District heating was first introduced in Korea in 1985. As the service life of the underground thermal piping network has increased for more than 30 years, the maintenance of the underground thermal pipe has become an important issue. A variety of complex technologies are required for periodic inspection and operation management for the maintenance of the aged thermal piping network. Especially, it is required to develop a model that can be used for decision making in order to derive optimal maintenance and replacement point from the economic viewpoint in the field. In this study, the analysis was carried out based on the repair history and accident data at the operation of the thermal pipe network of five districts in the Korea District Heating Corporation. A failure probability model was developed by introducing statistical techniques of qualitative analysis and binomial logistic regression analysis. As a result of qualitative analysis of maintenance history and accident data, the most important cause of pipeline damage was construction erosion, corrosion of pipe and bad material accounted for about 82%. In the statistical model analysis, by setting the separation point of the classification to 0.25, the accuracy of the thermal pipe breakage and non-breakage classification improved to 73.5%. In order to establish the failure probability model, the fitness of the model was verified through the Hosmer and Lemeshow test, the independent test of the independent variables, and the Chi-Square test of the model. According to the results of analysis of the risk of thermal pipe network damage, the highest probability of failure was analyzed as the thermal pipeline constructed by the F construction company in the reducer pipe of less than 250mm, which is more than 10 years on the Seoul area motorway in winter. The results of this study can be used to prioritize maintenance, preventive inspection, and replacement of thermal piping systems. In addition, it will be possible to reduce the frequency of thermal pipeline damage and to use it more aggressively to manage thermal piping network by establishing and coping with accident prevention plan in advance such as inspection and maintenance.

Effects of the Remanent Magnetization on Detecting Signals in Magnetic Flux Leakage System (자기누설탐상시스템에서 배관의 잔류자화가 결함신호에 미치는 영향)

  • Seo, Kang;Jeong, Hyun-Won;Park, Gwan-Soo;Rho, Yong-Woo;Yoo, Hui-Ryong;Cho, Sung-Ho;Kim, Dong-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.325-331
    • /
    • 2005
  • The magnetic Hut leakage (MFL) type nondestructive testing (NDT) method is widely used to detect corrosion and defects, mechanical deformation of the underground gas pipelines. The object pipeline is magnetically saturated by the magnetic system with permanent magnet and yokes. Because of the strong magnetic field enough to saturate the pipe, there could be distortion of the sensing signals because of the magnetization of the pipeline itself, To detect the defects precisely, the sensing signals are need to be compensated to eliminate the distortions coming from the media hysteresis. In this paper, the magnetizations of the pipeline in MFL type NDT are analyzed by Preisach model and 3D FEM. The distortions of the sensing signals are analyzed.

Development of Numerical Model and Experimental Apparatus for Analyzing the Performance of a Ball Valve used for Gas Pipeline in Permafrost Area (극한지 자원이송망 볼밸브 수치모델 및 성능평가장치 개발)

  • Lee, Sang Moon;Jang, Choon Man
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.5
    • /
    • pp.550-559
    • /
    • 2014
  • Hydraulic performance of the 1 inch ball valve have been analyzed based on the three-dimensional Reynolds-averaged Navier-Stokes analysis and an experiment. The experimental test rig of the 1 inch ball valve has been developed to investigate pressure drop for the 1 inch ball valve. The numerical model, which has reliability and effectiveness, has been constructed through the grid dependency test and validation with the results of the experiment. Shear stress transport turbulence model has been used to enhance an accuracy of the turbulence prediction in the pipeline and ball valve, respectively. Effects of the ball valve angle on the flow characteristics and friction performance have been evaluated.

A Parallel Deep Convolutional Neural Network for Alzheimer's disease classification on PET/CT brain images

  • Baydargil, Husnu Baris;Park, Jangsik;Kang, Do-Young;Kang, Hyun;Cho, Kook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3583-3597
    • /
    • 2020
  • In this paper, a parallel deep learning model using a convolutional neural network and a dilated convolutional neural network is proposed to classify Alzheimer's disease with high accuracy in PET/CT images. The developed model consists of two pipelines, a conventional CNN pipeline, and a dilated convolution pipeline. An input image is sent through both pipelines, and at the end of both pipelines, extracted features are concatenated and used for classifying Alzheimer's disease. Complimentary abilities of both networks provide better overall accuracy than single conventional CNNs in the dataset. Moreover, instead of performing binary classification, the proposed model performs three-class classification being Alzheimer's disease, mild cognitive impairment, and normal control. Using the data received from Dong-a University, the model performs classification detecting Alzheimer's disease with an accuracy of up to 95.51%.

Effect of Ground Subsidence on Reliability of Buried Pipelines (지반침하가 매설배관의 건전성에 미치는 영향)

  • 이억섭;김동혁
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.173-180
    • /
    • 2004
  • This paper presents the effect of varying boundary conditions such as ground subsidence, internal pressure and temperature variation for buried pipelines on failure prediction by using a failure probability model. The first order Taylor series expansion of the limit state function incorporating with von-Mises failure criteria is used in order to estimate the probability of failure mainly associated with three cases of ground subsidence. Using stresses on the buried pipelines, we estimate the probability of pipelines with von-Mises failure criterion. The effects of varying random variables such as pipe diameter, internal pressure, temperature, settlement width, load for unit length of pipelines, material yield stress and pipe thickness on the failure probability of the buried pipelines are systematically studied by using a failure probability model for the pipeline crossing ground subsidence regions which have different soil properties.

A Parametric Study on Ice Scouring Mechanism for Determination of Pipeline Burial Depths

  • Park, Kyung-Sik;Lee, Jong-Ho
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.2
    • /
    • pp.29-40
    • /
    • 2004
  • Interaction of grounded ice ridges with underlying seabed is one of the major considerations in the design of Arctic pipeline system. Previously several ice scour models were developed by researchers to describe the ice scour-seabed interaction mechanism. In this paper, a parametric study on ice scouring mechanism is performed and the limitation of ice scour-seabed interaction models is discussed. Simple laboratory tests are carried out and then the shape pattern of deposited soil around the ice is redefined. New ice scour model assumes trapezoidal cross section based on the field observation data. Ice scour depth and soil resistance forces on seabed are calculated with varying the keel angle of a model ice ridge.

Vibration Analysis of the Pipeline with Internal Unsteady Fluid Flow by Using Spectral Element Method (스펙트럴요소법을 이용한 내부 비정상류를 갖는 파이프에 대한 진동해석)

  • Seo, Bo-Sung;Cho, Joo-Yong;Lee, U-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.387-393
    • /
    • 2006
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid flow. The spectral element matrix is formulated by using the exact frequency-domain solutions of the pipe-dynamics equations. The spectral element dynamic analysis is then conducted to evaluate the accuracy of the present spectral element model and to investigate the vibration characteristics and internal fluid characteristics of an example pipeline system.