• Title/Summary/Keyword: pipe system

Search Result 2,425, Processing Time 0.031 seconds

Vibration Analysis for IHTS Piping System of LMR Conveying Hot Liquid Sodium (고온소듐 내부유동을 갖는 액체금속로 중간열전달계통 배관에 대한 진동특성 해석)

  • Koo, Gyeong-Hoi;Lee, Hyeong-Yeon;Lee, Jae-Han
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.386-391
    • /
    • 2001
  • In this paper, the vibration characteristics of IHTS(Intermediate Heat Transfer System) piping system of LMR(Liquid Metal Reactor) conveying hot liquid sodium are investigated to eliminate the pipe supports for economic reasons. To do this, a 3-dimensional straight pipe element and a curved pipe element conveying fluid are formulated using the dynamic stiffness method of the wave approach and coded to be applied to any complex piping system. Using this method, the dynamic characteristics including the natural frequency, the frequency response functions, and the dynamic instability due to the pipe internal flow velocity are analyzed. As one of the design parameters, the vibration energy flow is also analyzed to investigate the disturbance transmission paths for the resonant excitation and the non-resonant excitations.

  • PDF

Thermal Crack Characteristics of Concrete Walls with Pipe Cooling (파이프 쿨링 공법 적용에 따른 벽체구조물의 온도균열 특성)

  • 박찬규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • This paper reports the performance results of hydration heat control of mass concrete walls with pipe cooling system. The thickness of walls ranged from 0.9 to 2.2m. In order to investigate the effect of pipe cooling on the thermal and thermal crack characteristics, the pipe cooling was conducted for 42 walls, and the investigation of thermal cracks was conducted for 14 walls. Based on the investigation, the pipe cooling method decreased the peak temperature of about 13-2$0^{\circ}C$ and the thermal crack width of about 30% for mass concrete walls.

  • PDF

A Calculation Method for Temperature Distribution of Hot Water Pipe under Unsteady Condition (비정상조건하의 온수배관의 온도분포에 관한 수치계산법 연구)

  • Choi, C.H.;Suh, S.J.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.13-21
    • /
    • 1999
  • Calculation method about the water temperature variable inside hot water pipe had proposed in the past does not correspond with branch pipe system, variable of water volume, variable of entrance water temperature, using and so on. A calculation method proposed in this paper can solve above problems, and calculate the kinds variation of the water temperature inside pipe in the real use state of the hot water pipe.

  • PDF

CFD Analysis of a Concept of Nuclear Hybrid Heat Pipe with Control Rod (원자로 제어봉과 결합된 하이브리드 히트파이프의 CFD 해석)

  • Jeong, Yeong Shin;Kim, Kyung Mo;Kim, In Guk;Bang, In Cheol
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.109-114
    • /
    • 2014
  • After the Fukushima accident in 2011, it was revealed that nuclear power plant has the vulnerability to SBO accident and its extension situation without sufficient cooling of reactor core resulting core meltdown and radioactive material release even after reactor shutdown. Many safety systems had been developed like PAFS, hybrid SIT, and relocation of RPV and IRWST as a part of steps for the Fukushima accident, however, their applications have limitation in the situation that supply of feedwater into reactor is impossible due to high pressure inside reactor pressure vessel. The concept of hybrid heat pipe with control rod is introduced for breaking through the limitation. Hybrid heat pipe with control rod is the passive decay heat removal system in core, which has the abilities of reactor shutdown as control rod as well as decay heat removal as heat pipe. For evaluating the cooling performance hybrid heat pipe, a commercial CFD code, ANSYS-CFX was used. First, for validating CFD results, numerical results and experimental results with same geometry and fluid conditions were compared to a tube type heat pipe resulting in a resonable agreement between them. After that, wall temperature and thermal resistances of 2 design concepts of hybrid heat pipe were analyzed about various heat inputs. For unit length, hybrid heat pipe with a tube type of $B_4C$ pellet has a decreasing tendency of thermal resistance, on the other hand, hybrid heat pipe with an annular type $B_4C$ pellet has an increasing tendency as heat input increases.

Analysis of Steady Flow by Main Pipe Arrangement in the Water Distributing Pipe Network (배수관망(配水管網)의 간선배치(幹線配置)에 따른 정류(定流)흐름 해석(解析))

  • Lee, Jeung Seok;Park, Ro Sam;Kim, Jee Hak;Choi, Yun Young;Ahn, Seung Seop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.73-82
    • /
    • 1999
  • In this study, the optimal analysis for pipe network is performed for the combined ideal pipe network system(CASE 1, CASE 2 and CASE 3) which is composed of 25 nodes, 41 elements, and 1 fixed nodal head with evaluating pressure variation distribution of main and branch in grid composed drainage pipe network. The linear analysis technique used as the analysis method in this study, the KYPIPE being used extensively as the linear technique to design and analysis of pipe network is applied. Firstly, in the analysis of pipe network, the CASE 2 and CASE 3 supply same thing(value) in the result of considering the total flow provided each pipeline, but in the general intension in the case of CASE 2, relative width of supply is more large than CASE 1 and CASE 3. Secondly, in the analysis technique of pipe network, CASE 3 is analysed largest as a result of comparing with same heads, and in the order of their size CASE 2 and CASE 1 were determined but the difference doesn't appear to be obvious. Thirdly, as the result of determining main factor, pressure in the design and analysis of net work. CASE 3 is from Node 3 to 25 than CASE 1 and CASE 2 and it is determined in the order of their size, CASE 2 and CASE 1. Finally, in this study, discharge flow distribution is evaluated in the same condition with 3-type CASE in the case of branch position for designing optimal composed drainage pipe network. As the result of that, branch pipe perform. Therefore, it is thought that the efficient and reasonable management of water supply and sewerage design will be possible if it give all our energies to study at the pipe system design in and out of country in the future.

  • PDF

REAL-TIME CORROSION CONTROL SYSTEM FOR CATHODIC PROTECTION OF BURIED PIPES FOR NUCLEAR POWER PLANT

  • Kim, Ki Tae;Kim, Hae Woong;Kim, Young Sik;Chang, Hyun Young;Lim, Bu Taek;Park, Heung Bae
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.12-18
    • /
    • 2015
  • Since the operation period of nuclear power plants has increased, the degradation of buried pipes gradually increases and recently it seems to be one of the emerging issues. Maintenance on buried pipes needs high quality of management system because outer surface of buried pipe contacts the various soils but inner surface reacts with various electrolytes of fluid. In the USA, USNRC and EPRI have tried to manage the degradation of buried pipes. However, there is little knowledge about the inspection procedure, test and manage program in the domestic nuclear power plants. This paper focuses on the development and build-up of real-time monitoring and control system of buried pipes. Pipes to be tested are tape-coated carbon steel pipe for primary component cooling water system, asphalt-coated cast iron pipe for fire protection system, and pre-stressed concrete cylinder pipe for sea water cooling system. A control system for cathodic protection was installed on each test pipe which has been monitored and controlled. For the calculation of protection range and optimization, computer simulation was performed using COMSOL Multiphysics (Altsoft co.).

Influence of Two Moving Masses on Dynamic Behavior of a Simply Supported Pipe Conveying Fluid Flow (두 이동질량이 단순지지 유체유동 파이프의 동특성에 미치는 영향)

  • 윤한익;임순홍;유진석
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.605-611
    • /
    • 2003
  • A simply supported pipe conveying fluid and two moving masses upon it constitute this nitration system. The equation of motion is derived by using Lagrange's equation. The influence of the velocities of two moving masses, the distance between two moving masses, and the velocities of fluid flow in the pipe have been studied on the dynamic behavior of a simply supported pipe by numerical method. The velocities of fluid flow are considered with in its critical values of a simply supported pipe without moving masses upon It. Their coupling effects on the transverse vibration of a simply supported pipe are inspected too. As the velocity of two moving masses increases, the deflection of a simply supported pipe is increased and the frequency of transverse vibration of a simply supported pipe is not varied. In case of small distance between two masses, the maximum deflection of the pipe occur when the front mass arrive at midspan. Otherwise as the distance get larger, the position of the front masses where midspan deflection is maximum moves beyond the midpoint of a simply supported pipe. The deflection of a simply supported pipe is increased by coupling of the velocities of moving masses and fluid flow.

Biaxial Compressive Deformation Characteristics of Double Round Copper Pipes (2중 원형동관의 2축압축 변형특성에 관한 연구)

  • Yoo, C.K.;Won, S.T.
    • Transactions of Materials Processing
    • /
    • v.23 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • The deformation characteristics of a double round copper pipe and a single round copper pipe under biaxial compression were studied using a horizontal compression die. The change in punch load and in deformation behavior was measured during the experiments using various compressive deformation rates in the range of 10mm/min. ~ 450mm/min. The maximum punch load for both the double round copper pipe and the single round copper pipe decreased with increasing compressive deformation rate. The maximum punch load for the single round copper pipe was twice that of the double round copper pipe. After a 4.0mm stroke, the deformed shape of the single round copper pipe remained rectangular. However the outer tube of double round copper pipe remained rectangular while the inner tube was clover shaped. The stress and strain distributions in the double round copper pipe and the single round copper pipe show clear differences. The results of numerical simulations using Deform-2D are in good agreement with experimental results.

Cement Prefabricated Piped Making and Its Application on Agriculture Irrigation

  • Meng, Qingchang;Sun, Qingyi;Dang, Yongliang
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.212-218
    • /
    • 1996
  • The concrete pipe used to distribute irrigation water to the right place now available is commonly made up of cement , sand, earth, pebble, etc. These materials with right ratio and right amount of water were mixed and squeezed through the pipe-making machine called vertical squeezed pipe-making machine, and then a cement prefabricated pipe is produced . This kinds of pipe has been expanding by leaps and bounds. Being little cement contents and low cost, the length of pipe is 1.0m or so with weight of 50kg, which is easy to be made and to be transported. The demolish pressure of it is 0.2 MPa or so, which meets the needs of agriculture irrigation . The buried pipe irrigation system, has been popularized in Jining Municipal , Shandong Province. By the year of 1995 , the irrigation area under pipe conveyancesystem usign this type of pipe has reached 74000 hectares. By calculation, about 27.7million ㎥ water, 2.88 million kWh power , 0.167 million man power and 1528 hectares cu tivated land will be saved one year, adding value of agriculture output increased by 10 million kg. The total economic benefits amount to 0.92 million US$ a year. The paper presents the pipe making course and its application on a large scale area.

  • PDF

Influence of a Moving Mass on Dynamic Behavior of a Simply Supported Pipe Conveying Fluid (단순지지 송수관의 동특성에 미치는 이동질량의 영향)

  • 윤한익
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.135-140
    • /
    • 2001
  • A simply supported pipe conveying fluid and a moving mass upon it constitute a vibrational system. The equation of motion is derived by using Lagrange's equation. The influence of the velocity and the inertia force of a moving mass and the velocities of fluid flow in the pipe have been studied on the dynamic behavior of a simply supported pipe by numerical method. The velocities of fluid low are considered within its critical values of the simply supported pipe without a moving mass upon it. Their coupling effects on the transverse vibration of a simply supported pipe are inspected too. as the velocity of a moving mass increases, the deflection of midspan of a simply supported pipe conveying fluid is increased and the frequency of transverse vibration of the pipe is not varied. Increasing of the velocity of fluid flow makes the frequency of transverse vibration of the simply supported pipe conveying fluid decrease and the deflection of midspan of the pipe increase. The deflection of the simply supported pipe conveying fluid is increased by a coupling of the moving mass and the velocities of a moving mass and fluid flow.

  • PDF