• Title/Summary/Keyword: pipe - houses

Search Result 42, Processing Time 0.027 seconds

A Study on the Safety Frame Interval of Pipe Houses in Kyungpook Region (경북지방 파이프하우스의 안전골조간격에 관한 연구)

  • 이현우;이석건
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.195-202
    • /
    • 1995
  • As the pipe houses were constructed by imitation and routine without a structural design by now, they were often destructed by a strong wind or a heavy snowfall. The purpose of this study was to provide the basic data for the safety structural design of the pipe houses in Kyungpook region to prevent meteorological disaster. It was shown that the change of frame interval according to the safety factor under the wind load was similar that under the snow load. But the safety frame interval under the snow load was approximately 0.5-0.6m greater than that under the wind load for equal safety factor. Therefore, it seemed that the maximum safety frame interval was to be decided by the snow load. The frame of the pipe houses in Seungju region was structurally stable under the design snow load in recurrence intervals of 8-15years, but was unstable in Kolyong region.

  • PDF

A Study on the Typhoon Disaster of Greenhouse (시설원예용 플라스틱 하우스의 태풍피해에 관한 연구)

  • 윤용철;서원명;윤충섭
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.167-174
    • /
    • 1995
  • This study was carried out to find a way of improving the windproof capability of greenhouse foundations. Generally, greenhouses are often collapsed due to the strong winds, because they are very light weight structures. In such a critical situations, the foundations are very often subjected to uplift and vibration at the same time. This paper describes both the wind disaster of greenhouses by the typhoon FAEY and the uplift resistance of greenhouse foundations. Followings are the results obtained from this study ; Judging from the view point of year round cultural aspects, it is recommended that some measures be taken for the preventions of greenhouse film ruptures because greenhouse structural damages are found to be directly associated with the local rupture of cover film. In the case of surveyed area, movable pipe-houses or pipe-houses of 1-2W type were found to be completely destroyed when the maximum instantaneous wind velocity was over 30m/sec or so. In the case of movable pipe-houses, the uplift resistance of greenhouse was expected to increase with the increase of pipe diameter and/or the embedment pipe length. But at present situations there is a limitation in raising the uplift resistance of movable pipe-house, because pipe diameters as well as pipe lengths customarily selected by farmers are quite a much limited.

  • PDF

A Secular Change of Strength for Galvanized Steel Pipes for Vinyl Housing (비닐하우스용 아연도강관의 강도경년변화 시험(농업시설))

  • 남상운;김문기;권혁진
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.296-301
    • /
    • 2000
  • Bend test for metallic materials was conducted on samples of galvanized steel pipes being used in greenhouse farms. A secular change of yield strength for galvanized steel pipes was analyzed with the part of buried in the ground and exposed in the atmosphere. From those experimental results and corrosion rate of galvanized film, the standard durable years for pipe framed greenhouses are estimated that the small sized pipe houses of movable type is 7∼8 years and the large sized pipe houses of fixed type is 14∼15 years.

  • PDF

A Study on the Strength Characteristics of Vinyl House Pipe Filled with Mortar (모르타르 충진 비닐하우스 파이프의 강도특성에 관한 연구)

  • Paik, Shinwon;Kim, Hanjoong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.13-17
    • /
    • 2015
  • There are many vinyl houses in rural areas. These vinyl houses have occasionally been collapsed due to heavy snow load in winter. If these vinyl houses are collapsed, many farmers get a lot of economical damages. So it is very important to built safe vinyl house that is able to withstand the applied heavy snow load. In this study, compressive buckling and flexural tests were performed to investigate the strength increase of circular mortar filled pipes. The results showed that buckling load and flexural moment of mortar filled pipes were increased 42 % ~ 82 %, 40 % ~ 44 % respectively more than only pipe without mortar. It is recommended that mortar filled pipes as main members of vinyl house have to be used to prevent collapsing due to the severe snow load.

A Study on the Standard Durable Years of Pipe Framed Greenhouses (파이프 골조 온실 구조물의 표준내용연수 연구)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.1
    • /
    • pp.96-101
    • /
    • 2001
  • In designing the greenhouse structures, snow and wind loads must be estimated on the basis of the probability of occurrence of snow or wind storms of a given intensity. The recurrence interval chosen depends on the standard durable years and safety factors of the greenhouse. This study was carried out to find the standard durable years of pipe framed greenhouses. Bend test for metallic materials was conducted on samples of galvanized steel pipes being used in greenhouse frames. A secular change of collapse loads and flexural rigidity for galvanized steel pipes were analyzed with the parts buried in the ground and exposed in the atmosphere. From those experimental results and corrosion rate of galvanized film, the standard durable years for pipe framed greenhouses are estimated as follows ; the small scale pipe houses of movable type is 7∼8 years and the large scale pipe houses of fixed type is 14∼15 years.

  • PDF

Experimental Studies on the Structural Safety of Pipe-Houses (파이프하우스의 구조안전에 관한 실험적 연구)

  • 김문기;남상운
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.17-24
    • /
    • 1995
  • This study was carried out to make fundamental data for structural safety test of pipe- houses. Experiment on the stress distribution of pipe- houses was conducted to find suitable structural analysis model by examination of end support conditions of pipe. Besides, the loading test and the pile driving test were done to find pull-out capacity and bearing capacity of pipe on the assumption that pipe is pile foundation. For single span pipe - house, the theoretical results assuming the end support condition of pipe is fixed under ground agreed closely with the experimental results of stress distribution. On the other hand for double span pipe -house, the end support conditions of pipe were fixed support when vertical load is applied, and hinged one when horizontal load is applied. The pull - out capacity and allowable bearing capacity of the pipe portion that was buried in the grounds that were soft soil of paddy field and medium or hard soils of dry field derived from experimental results.

  • PDF

A Case Study of Tunnel Electronic Blasting to Control Vibration in the Proximity of the Gas Pipe (매설 가스관 근접 진동제어를 위한 터널 전자발파 시공사례)

  • Choi, Hyeong-Bin;Kim, Gab-Soo
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.25-31
    • /
    • 2013
  • In this case of "Seongnam~Yeoju double-lanes railroad construction", there were resident houses and gas pipe which were concerned about damages from vibration and noise. Especially, gas pipe which is a diameter of ${\varphi}500mm$ was located under the ground along upside road. The limit of vibration was 1.0cm/sec to protect gas pipe. The electronic blasting systems have been used to control vibration & noise not only gas pipe but also resident houses. The results of tunnelling were successfully conducted with effective vibration control and quick excavation by electronic blasting without any damages to adjacent facilities.

A Study on the Reduction Method of Heavy-weight floor impact sound and Plumbing noise in Decrepit Apartment houses (노후 아파트의 바닥충격음 및 급·배수 소음 저감방안에 관한 연구)

  • Joo, Moon Ki;Han, Myung Ho;Oh, Yang Ki
    • KIEAE Journal
    • /
    • v.9 no.2
    • /
    • pp.99-106
    • /
    • 2009
  • The noise in apartment buildings are major factor that determine the quality of indoor noise environment. Particularly, the noise from children's running footsteps and plumbing noise have caused the residents who live in decrepit apartment houses to uncomfortable environment. And as time go by, sound performance are getting worse according to the aging of the facilities. So this study deals with the plans to improve the sound performance of decrepit apartment house. To compare the noise reduction, we measured the heavy-weight impact sound level and plumbing noise level before and after changes the measurement conditions. As the results of measurements, the heavy-weight impact sound level were decreased when stiffness reinforcement were installed on slab. Especially the sound level were decreased 2.1-7.6dB in 50-80Hz of low frequency range. Instead of PVC pipe system, cast iron pipe and triple elbow drain pipe systems were installed. Noise level were decreased 15dB(A) in 250Hz. Noise level of pipe system's on the slab is less than under slab one. On the contrary water saving stool showed increasing the noise level.

Experimental Study on the Ground Support Conditions of Pipe Ends in Single Span Pipe Greenhouse (단동파이프하우스의 지점조건 분석을 위한 실험 연구)

  • Lee, Suk-Gun;Lee, Jong-Won;Kwak, Cheul-Soon;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.188-196
    • /
    • 2008
  • Single span pipe greenhouses (pipe houses) are widely used in Korea because these simple structures are suitable for construction by farmers thus reducing labor cost. However, these pipe houses are very weak and frequently damaged by heavy snow and strong wind. Pipe house is constructed by pipe fabricator, which is anchored to the ground by inserting each pipe end into ground to $30\sim40cm$, so the ground support condition of pipe end is not clear for theoretical analysis on greenhouse structure. This study was carried out to find out the suitable ground support condition needed f3r structural analysis when pipe house was designed. The snow and wind loading tests on the actual size pipe house were conducted to measure the collapsing shape, displacement and strain. The experimental results were compared with the structural analysis results for 4 different ground support conditions of pipe ends(fixed at ground surface, hinged at ground surface, fixed under ground and hinged under ground). The pipe house under snow load was collapsed at the eaves as predicted, and the actual strain at the windward eave and ground support under wind load was larger than that under snow load. The displacement was the largest at the hinged support under ground, followed by the hinged at ground surface, the fixed under ground and then the fixed at ground surface independent of displacement direction and experimental loading condition. The experimental results agreed most closely with the results of theoretical analysis at the fixed condition under ground among 4 different ground support conditions. As the results, it was recommended that the pipe end support condition of single span pipe greenhouse was the fixed under ground for structural analysis.

Experimental Analysis on Yield Strength of Pipe Connectors and Joints for Pipe Framed Greenhouses (파이프골조 온실의 조립연결구 내력에 관한 실험적 연구)

  • Nam, Sang-Woon;Kim, Moon-Ki;Kwon, Hyuck-Jin
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.271-274
    • /
    • 2001
  • Experiments on the yield strength of pipe connectors made of metal wire, joint pins, pole pipes, multi span insertion joints, and T-clamp joints used in pipe houses were conducted. The strength of connections of a pipe connector made of metal wire was adequate but it had a big difference according to loading direction. The collapse load of pipes connected with a joint pin was lower than that of single pipes. Also experimental results showed that pole pipes for use in a part of frame buried under the ground were safe, and the strength of multi span insertion joints should be increased. The resistant moment of T-clamp was about 13.7% of a single pipe.

  • PDF