• Title/Summary/Keyword: pine wilt nematode

Search Result 42, Processing Time 0.022 seconds

Development of a Redox Dye-Based Rapid Colorimetric Assay for the Quantitation of Viability/Mortality of Pine Wilt Nematode

  • Han, Kyeongmin;Lee, Jaejoon;Shanmugam, Gnanendra;Lee, Sun Keun;Jeon, Junhyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1117-1123
    • /
    • 2019
  • Control of pine wilt disease, which is caused by pine wilt nematode Bursaphelenchus xylophilus, is heavily dependent on the use of chemicals such as abamectin. Although such chemicals are highly effective, demands for alternatives that are derived preferentially from natural sources, are increasing out of environmental concerns. One of the challenges to discovery of alternative control agents is lack of fast and efficient screening method that can be used in a high-throughput manner. Here we described the development of colorimetric assay for the rapid and accurate screening of candidate nematicidal compounds/biologics targeting B. xylophilus. Contrary to the conventional method, which relies on laborious visual inspection and counting of nematode population under microscope, our method utilizes a redox dye that changes its color in response to metabolic activity of nematode population in a given sample. In this work, we optimized parameters of our colorimetric assay including number of nematodes and amount of redox dye, and tested applicability of our assay for screening of chemicals and biologics. We demonstrated that our colorimetric assay can be applied to rapid and accurate quantification of nematode viability/mortality in a nematode population treated with candidate chemicals/biologics. Application of our method would facilitate high-throughput endeavors aiming at finding environment-friendly control agents for deadly disease of pine trees.

Study on the Damage by Pine Wood Nematode in Black Pine Trees

  • Ha, Man-Leung;Lee, Chong-Kyu
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.2
    • /
    • pp.105-112
    • /
    • 2017
  • The distribution and form of pine wood nematode (PWN) were investigated in Jinju-si and Sacheon-si areas, where infested with pine wilt disease (PWD). The average PWN population per g of the tubulation part in the wilted Japanese balck pine were 381.2 and 341 in Jinju-si and Sacheon-si, respectively. The PWN population per g of affected Japanese black pine with wilt rate below 60% were 556 and 518 in Jinju-si and Sacheon-si, respectively. The ratios of PWN and other plant-parasitic nematode in the wilted Japanse black pines were 48% vs. 52% in Jinju-si and 53% vs. 47% in Sacheon-si after exposure to PWD for 1 year. The survivorship of pine wood nematode in the sampled trees after 1 year was 0-10% in the Jinju-si area and 5-20% detected in the Sacheon-si area. In the forest areas affected by PWN, the highest survival rates were 37.2% and 39.8% at 25 cm diameter at breast height (DBH) in Jinju-si and Sacehon-si, respectively, while the highest wilt rates were 30.5% and 28.3% at 30 cm DBH in Jinju-si and Sacehon-si, respectively.

Comparing Field Resistance with Pine Wilt Disease Among Six Pine Species at Seedling Stages (소나무속 6수종 묘목의 소나무재선충병에 대한 포지 저항성 비교)

  • Yang-Gil Kim;Dayoung Lee;Sunjeong Kim;Su-Vi Kim;Bae Young Choi;Donghwan Shim;Youn-Il Park;Kyu-Suk Kang
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.258-266
    • /
    • 2023
  • Pine wilt disease is caused by the pine wood nematode (Bursaphelenchus xylophilus) and has killed many pine trees in Europe and Northeast Asia, including South Korea. Resistance to pine wilt disease varies among species. Previous studies were mostly conducted in nature or greenhouses and only a few in test fields. In this study, seedlings of six pine species (Pinus thunbergii, P. koraiensis, P. densiflora, P. parviflora, P. rigida × P. taeda, and P. strobus) were artificially inoculated by pine wood nematodes in the test field. The Wilt Index was measured every 2 weeks after inoculation in addition to the mortality rate, detection rate, and pine wood nematode concentration measurement after 24 weeks. The pine wilt disease mortality rates were P. thunbergii (80%), P. koraiensis (77.8%), P. densiflora (62.5%), and P. parviflora (22.0%), and both P. rigida × P. taeda and P. strobus survived. The pine nematode detection rates were the same among the species except for P. rigida × P. taeda pine (22.2%). High Wilt-Index values were obtained for P. thunbergii, P. koraiensis, and P. densiflora, which had mortality rates higher than the other species. Furthermore, there were no significant differences in the Wilt Indexes between P. parviflora, P. rigida × P. taeda, P. strobus, and the control group. Statistically, P. thunbergii and P. koraiensis showed high susceptibility to pine wilt disease, P. densiflora and P. parviflora showed moderate susceptibility, and P. rigida × P. taeda and P. strobus showed apparent resistance. These results provide basic data for pine wood nematode resistance breeding or as evidence of the need for afforestation of P. rigida × P. taeda and P. strobus.

Genomic Insights into Nematicidal Activity of a Bacterial Endophyte, Raoultella ornithinolytica MG against Pine Wilt Nematode

  • Shanmugam, Gnanendra;Dubey, Akanksha;Ponpandian, Lakshmi Narayanan;Rim, Soon Ok;Seo, Sang-Tae;Bae, Hanhong;Jeon, Junhyun
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.250-255
    • /
    • 2018
  • Pine wilt disease, caused by the nematode Bursaphelenchus xylophilus, is one of the most devastating conifer diseases decimating several species of pine trees on a global scale. Here, we report the draft genome of Raoultella ornithinolytica MG, which is isolated from mountain-cultivated ginseng plant as an bacterial endophyte and shows nematicidal activity against B. xylophilus. Our analysis of R. ornithinolytica MG genome showed that it possesses many genes encoding potential nematicidal factors in addition to some secondary metabolite biosynthetic gene clusters that may contribute to the observed nematicidal activity of the strain. Furthermore, the genome was lacking key components of avermectin gene cluster, suggesting that nematicidal activity of the bacterium is not likely due to the famous anthelmintic agent of wide-spread use, avermectin. This genomic information of R. ornithinolytica will provide basis for identification and engineering of genes and their products toward control of pine wilt disease.

Insecticidal Activity of Japanese Pine Sawyer (Monochamus alternatus) and Pine Sawyer (Monochamus saltuarius) Using Abamectin and Emamectin benzoate

  • Lee, Dong-Hyeon;Suh, Dong Yeon;Seo, Sang-Tae;Lee, Sang-Hyun
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.3
    • /
    • pp.255-258
    • /
    • 2020
  • Pine wilt disease (PWD) caused by pine wood nematode (PWN), Bursaphelenchus xylophilus, which is transmitted by Monochamus alternatus and M. saltuarius, is a serious threat to coniferous forests in the Northern Hemisphere, including Korea. The efficacy of abamectin and emamectin benzoate for preventing the PWD in the field and its effect on the vectors Monochamus alternatus and M. saltuarius (Coleoptera: Cerambycidae) were evaluated. An experimental plot was delimited, of which consists of Japanese red pine (Pinus densiflora) forest in South Korea, and trunk injection trials were made with abamectin and emamectin benzoate. Branches of each tree were collected, and are subsequently subjected to the analysis of residues for both nematicides. Results obtained in this study showed that abamectin and emamectin benzoate showed over 90% mortality at the recommended concentration after 6 days and 8 days, respectively. Consequently, it was found that both insecticides have a higher effect on the susceptibility and persistence of two vectors of PWD, M. alternatus and M. saltuarius feeding on branches of the trees, and its application by trunk injection is confirmed as an option for pine wilt disease management programs in Korea.

Amplified fragment length polymorphism analysis and genetic variation of the pinewood nematode Bursaphelenchus xylophilus in South Korea

  • Jung, Jong-Woo;Han, Hye-Rim;Ryu, Sung-Hee;Kim, Won
    • Animal cells and systems
    • /
    • v.14 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • The pinewood nematode Bursaphelenchus xylophilus causes pine wilt disease and is a serious economic concern for the forest industry of South Korea. To achieve effective control with limited resources, it is necessary to clarify the transmission routes and mechanisms of dispersal of this organism. Highly polymorphic and easy-to-use molecular markers can be used for investigating this aspect. In this study, we evaluated the usefulness of amplified fragment length polymorphisms (AFLPs) for investigating the genetic variations of B. xylophilus and related individuals from China, Japan, and South Korea. The AFLP patterns obtained in our study were similar to the microsatellite patterns reported in a previous study; our AFLP patterns indicated high genetic variability and cryptic genetic structure, but did not indicate any peculiar geographic structure. Moreover, the genetic distances between individuals suggested that the Korean population was affected to a greater extent by the Chinese population than the Japanese population. Further, the gene flow among the related species appeared to be limited; however, there may be also the possibility of genetic introgression among species. These results confirm the usefulness of AFLPs for understanding the epidemiology of pine wilt disease, thereby contributing to the effective control of this disease.

Invention of the Portable Bark Remover for Control of Pine Wilt Disease by Disruption of Oviposition of Insect Vector (Monochamus alternatus) (소나무재선충병 매개충 솔수염하늘소(Monochamus alternatus) 방제를 위한 휴대용 수피제거기 개발 및 산란 방지 효과)

  • Kim, Joon Bum;Park, Young Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.2
    • /
    • pp.300-304
    • /
    • 2013
  • Pine wilt disease caused by pine wood nematode, Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle, has become the most serious threat to pine trees in Korea since 1988. Pine wood nematode is transferred to healthy trees by Monochamus alternatus (Coleoptera: Cerambycidae) during its maturation feeding and female oviposition. A typical control method against insect vectors in Korea is fumigation of the dead trees by using metam-sodium SL (25%). However, this method is not environment friendly because of the forest contamination by chemical application and destroying landscape by plastic cover. Portable Bark Remover (PBR) was invented to reduce these environmental problems. The vectors oviposit under the bark of the newly dead trees only. Debarking infested trees prevents the vectors from laying eggs and eventually, they can not complete their life cycle. The PBR is a modified debarking device that is attached on the top of the electrical chain saw, which allows ease and rapid debarking of the infested trees. The new method by PBR is expected to be more economic and effective than other conventional methods such as "crushing", "burning" and "fumigation".

A Study on Orthogonal Image Detection Precision Improvement Using Data of Dead Pine Trees Extracted by Period Based on U-Net model (U-Net 모델에 기반한 기간별 추출 소나무 고사목 데이터를 이용한 정사영상 탐지 정밀도 향상 연구)

  • Kim, Sung Hun;Kwon, Ki Wook;Kim, Jun Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.251-260
    • /
    • 2022
  • Although the number of trees affected by pine wilt disease is decreasing, the affected area is expanding across the country. Recently, with the development of deep learning technology, it is being rapidly applied to the detection study of pine wilt nematodes and dead trees. The purpose of this study is to efficiently acquire deep learning training data and acquire accurate true values to further improve the detection ability of U-Net models through learning. To achieve this purpose, by using a filtering method applying a step-by-step deep learning algorithm the ambiguous analysis basis of the deep learning model is minimized, enabling efficient analysis and judgment. As a result of the analysis the U-Net model using the true values analyzed by period in the detection and performance improvement of dead pine trees of wilt nematode using the U-Net algorithm had a recall rate of -0.5%p than the U-Net model using the previously provided true values, precision was 7.6%p and F-1 score was 4.1%p. In the future, it is judged that there is a possibility to increase the precision of wilt detection by applying various filtering techniques, and it is judged that the drone surveillance method using drone orthographic images and artificial intelligence can be used in the pine wilt nematode disaster prevention project.

The Nematode Density and Compressive Strength Property of Pine Wilt Disease Damaged Trees by Soaking and Fumigating Treatment I (소나무재선충병 피해목의 침전·훈증처리를 통한 재선충밀도 및 압축강도성능에 관한 연구)

  • Yun, Seok-Lak;Park, Jung-Hwan;Park, Han-Min;Kim, Jong-Gab;Byeon, Hee-Seep
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.200-207
    • /
    • 2009
  • As an effort to utilize the pine woods damaged by pine wilt disease, this study analyzed the density of pine wood nematode and compressive strength of damaged trees treated through soaking and fumigating. The density of nematode in Pinus densiflora and Pinus thunbergii woods soaked in wood vinegar and nematicide, and in seawater reduced greatly in 21 days and in 30 days, respectively. When reextracted nematode was injected artificially into healthy trees, infection was not observed after the lapse of six months, and the mean density of Pinus densiflora and Pinus thunbergii was $0.47g/cm^3$ and $0.54g/cm^3$, respectively, and their compressive strengths were $304kgf/cm^2$ and $363kgf/cm^2$, respectively. As to change in the density of pine wood nematode after fumigating, pine wood nematode was detected until the third month in both species, and those detected afterwards were found to be similar nematodes. After 24 months, the mean densities of Pinus densiflora and Pinus thunbergii were $0.54g/cm^3$ and $0.52g/cm^3$, respectively, and their compressive strengths were $353kgf/cm^2$ and $370kgf/cm^2$, respectively.

Selection and Characterization of Bacillus licheniformis MH48 for the Biocontrol of Pine Wood Nematode (Bursaphelenchus xylophilus) (소나무재선충 생물학적 방제를 위한 Bacillus licheniformis MH48의 선발 및 특성 규명)

  • Jeong, Min-Hae;Yang, Seo-Young;Lee, Yong-Sung;Ahn, Young-Sang;Park, Yun-Serk;Han, Hye-rim;Kim, Kil-Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.3
    • /
    • pp.512-518
    • /
    • 2015
  • Pine wilt disease (PWD) caused by pine wood nematode, Bursaphelenchus xylophilus, has become the most serious threat to pine trees in Korea. This study was subjected to investigate effective biological control agent against PWD. To select nematocidal bacteria against PWD, Bacillus licheniformis MH48 was selected among five bacteria due to its high nematocidal potential. B. licheniformis MH48 was tested for cell growth and protease activity to evaluate its nematicidal potential. In the B. licheniformis MH48, cell numbers were highest three days after incubation, while protease activity was highest after seven days. In the effect of different concentrations of B. licheniformis MH48 culture broth against B. xylophilus, 20% concentration of culture broth showed approximately 80% of pine wood nematode mortality compared to the control. Especially, pine wood nematode's cuticle layers were degraded two days after treatment of B. licheniformis MH48 culture broth. The present study suggests that B. licheniformis MH48 can be one of the potential biocontrol candidates against pine wood nematode due to its ability to produce protease.