• Title/Summary/Keyword: pile structural capacity

Search Result 76, Processing Time 0.024 seconds

Axial Load Capacity Prediction of Single Piles in Clay and Sand Layers Using Nonlinear Load Transfer Curves (비선형 하중전이법에 의한 점토 및 모래층에서 파일의 지지력 예측)

  • Kim, Hyeongjoo;Mission, Joseleo;Song, Youngsun;Ban, Jaehong;Baeg, Pilsoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.45-52
    • /
    • 2008
  • The present study has extended OpenSees, which is an open-source software framework DOS program for developing applications to idealize geotechnical and structural problems, for the static analysis of axial load capacity and settlement of single piles in MS Windows environment. The Windows version of OpenSees as improved by this study has enhanced the DOS version from a general purpose software program to a special purpose program for driven and bored pile analysis with additional features of pre-processing and post-processing and a user friendly graphical interface. The method used in the load capacity analysis is the numerical methods based on load transfer functions combined with finite elements. The use of empirical nonlinear T-z and Q-z load transfer curves to model soil-pile interaction in skin friction and end bearing, respectively, has been shown to capture the nonlinear soil-pile response under settlement due to load. Validation studies have shown the static load capacity and settlement predictions implemented in this study are in fair agreement with reference data from the static loading tests.

  • PDF

A Study on Prediction of Moment Developed in Bottom of Foundations between Pile and Heterogeneous Soils (말뚝기초와 이질지반 경계부 기초저판에서의 발생모멘트 예측에 관한 연구)

  • Lim, Hae-Sik;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.2 no.3
    • /
    • pp.277-285
    • /
    • 2011
  • To reinforce bearing capacity-changed section or different foundation in the same building, empirical or simple tools have been used. To solve this problem, an analytical solution which can evaluate and reinforce the stability of foundation is introduced. To suggest a clue for the problems, current foundation reinforcing method is studied through recent literature studies and the structural analyses of foundation slab are performed on the pile foundation of 49$m^2$, 59$m^2$ and 84$m^2$ I type apartments in 15 story building. The analyses are conducted with SAP 2000, a computer program for ordinary structural analysis. To predict the moments of slab by ground non-uniformity, the structural analysis results for the foundation slab of 3 types 15 story apartment buildings in 49$m^2$, 59$m^2$ and 84$m^2$ I type on non-uniformity ground are shown in the diagrams.

Numerical modelling of a pile-supported embankment using variable inertia piles

  • Dia, Daniel;Grippon, Jerome
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.245-253
    • /
    • 2017
  • The increasing lack of good quality soils allowing the development of roadway, motorway, or railway networks, as well as large scale industrial facilities, necessitates the use of reinforcement techniques. Their aim is the improvement of the global performance of compressible soils, both in terms of settlement reduction and increase of the load bearing capacity. Among the various available techniques, the improvement of soils by incorporating vertical stiff piles appears to be a particularly appropriate solution, since it is easy to implement and does not require any substitution of significant soft soil volumes. The technique consists in driving a group of regularly spaced piles through a soft soil layer down to an underlying competent substratum. The surface load being thus transferred to this substratum by means of those reinforcing piles, which illustrates the case of a piled embankment. The differential settlements at the base of the embankment between the soft soil and the stiff piles lead to an "arching effect" in the embankment due to shearing mechanisms. This effect, which can be accentuated by the use of large pile caps, allows partial load transfer onto the pile, as well as surface settlement reduction, thus ensuring that the surface structure works properly. A technique for producing rigid piles has been developed to achieve in a single operation a rigid circular pile associated with a cone shaped head reversed on the place of a rigid circular pile. This technique has been used with success in a pile-supported road near Bourgoin-Jallieu (France). In this article, a numerical study based on this real case is proposed to highlight the functioning mode of this new technique in the case of industrial slabs.

PLAXIS 3D simulation, FLAC3D analysis and in situ monitoring of Excavation stability

  • Lei, Zhou;Zahra, Jalalichi;Vahab, Sarfarazi;Hadi, Haeri;Parviz, Moarefvand;Mohammad Fatehi, Marji;Shahin, Fattahi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.743-765
    • /
    • 2022
  • Near-surface excavations may cause the tilting and destruction of the adjacent superstructures in big cities. The stability of a huge excavation and its nearby superstructures was studied in this paper. Some test instruments monitored the deformation and loads at the designed location. Then the numerical models of the excavation were made in FLAC3D (a three-dimensional finite difference code) and Plaxis-3D (a three-dimensional finite element code). The effects of different supporting and reinforcement tools such as nails, piles, and shotcretes on the stability and bearing capacity of the foundation were analyzed through different numerical models. The numerically approximated results were compared with the corresponding in-field monitored results and reasonable compatibility was obtained. It was concluded that the displacement in excavation and the settlement of the nearby superstructure increases gradually as the depth of excavation rises. The effects of support and reinforcements were also observed and modeled in this study. The settlement of the structure gradually decreased as the supports were installed. These analyses showed that the pile significantly increased the bearing capacity and decreased the settlement of the superstructure. As a whole, the monitoring and numerical simulation results were in good consistency with one another in this practically important project.

Simplified Numerical Load-transfer Finite Element Modelling of Tunnelling Effects on Piles

  • Nip, Koon Lok (Stephen);Pelecanos, Loizos
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.117-129
    • /
    • 2019
  • Tunnelling in urban environments is very common nowadays as large cities are expanding and transportation demands require the use of the underground space for creating extra capacity. Inevitably, any such new construction may have significant effects on existing nearby infrastructure and therefore relevant assessment of structural integrity and soil-structure interaction is required. Foundation piles can be rather sensitive to nearby tunnel construction and therefore their response needs to be evaluated carefully. Although detailed three-dimensional continuum finite element analysis can provide a wealth of information about this behaviour of piles, such analyses are generally very computationally demanding and may require a number of material and other model parameters to be properly calibrated. Therefore, relevant simplified approaches are used to provide a practical way for such an assessment. This paper presents a simple method where the pile is modelled with beam finite elements, pile-soil interaction is modelled with soil springs and tunnelling-induced displacements are introduced as an input boundary condition at the end of the soil springs. The performance of this approach is assessed through some examples of applications.

Design Analysis of Substructure for Offshore Wind Pile Excavation (해상풍력 파일 굴착직경 결정을 위한 하부구조물 설계해석)

  • Lee, Gi-Ok;Sun, Min-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.48-55
    • /
    • 2019
  • With recent rapid increases in the power generation capacity of offshore wind power generators, reliable structural analysis of the large-scale infrastructure needed to install wind power generators at sea is required. Therefore, technology for heavy marine equipment such as barges and excavation equipment is needed. Under submarine conditions, rock drilling technology to install the substructure for offshore wind pile excavation is a very important factor in supporting a wind farm safely under dynamic loads over periods of at least 20 years. After investigating the marine environment and on-site ground excavation for the Saemangeum offshore wind farm, in this study we suggest.

Pull-out Test of Steel Pipe Pile Reinforced with Hollow Steel Plate Shear Connectors (유공강판 전단연결재로 보강된 강관말뚝 머리의 인발실험)

  • Lee, Kyoung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.285-291
    • /
    • 2016
  • The purpose of this study was to evaluate the structural capacity of steel pipe pile specimens reinforced with hollow steel plate shear connectors by pull-out test. Compressive strength testing of concrete was conducted and yield forces, tensile strengths and elongation ratios of re-bars and hollow steel plate were investigated. A 2,000kN capacity UTM was used for the pull-out test with 0.01mm/sec velocity by displacement control method. Strain gauges were installed at the center of re-bars and hollow steel plates and LVDTs were also installed to measure the relative displacement between the loading plate and in-filled concrete pile specimens. The yield forces of the steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.44-fold and 1.53-fold compared to that of a control specimen, respectively. Limited state forces of steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.23-fold and 1.29-fold compared to that of a control specimen, respectively. Yield state displacement and limited state displacement of steel pipe pile specimens reinforced with hollow steel plate shear connector were decreased 0.61-fold and 0.42-fold compared to that of a control specimen, respectively.

Design of Pile-Guide Mooring System for Offshore LNG Bunkering Terminal: A Case Study for Singapore Port (해상 LNG 벙커링 터미널용 파일 가이드 계류 시스템 설계: 싱가포르 항의 사례 연구)

  • Lee, Seong-yeob;Chang, Daejun
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.379-387
    • /
    • 2017
  • In this study, a pile-guide mooring system (PGMS) was designed for an offshore liquefied natural gas bunkering terminal (LNG-BT), which is an essential infrastructure for large LNG-fuelled ships. The PGMS consisted of guide piles to restrict five motions of the floater, except for heave, as well as a seabed truss structure to support the guide piles and foundation piles to fix the system to the seabed. Singapore port was considered for a case study because it is a highly probable ports for LNG bunkering projects. The wave height, current speed, and wind speed in Singapore port were investigated to calculate the environmental loads acting on the hull and PGMS. A load and resistance factor approach was used for the structural design, and a finite element analysis was performed for design verification. The steel usage of the PGMS was analyzed and compared with the material usage of a gravity-based structure under similar LNG capacity and water depth criteria. This paper also describes the water depth limit and wave conditions of the PGMS based on estimation of the initial investment and the present value profit difference. It suggests a suitable LNG-BT support system for various design conditions.

Construction and Functional Tests of Fuel Assembly Mechanical Characterization Test Facility (핵연료집합체 기계적특성 시험시설 구축과 기능시험)

  • Lee, Kang-Hee;Kang, Heung-Seok;Yoon, Kyung-Ho;Yang, Jae-Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.11-16
    • /
    • 2016
  • Fuel assembly's mechanical characterization test facility (FAMeCT) in KAERI was constructed with upgraded functional features such as increased loading capacity, underwater vibration testing and severe earthquake simulation for extended fuel design guideline. This facility is designed and developed to provide out-pile fuel data for accident analysis model and fuel licensing. Functional tests of FAMeCT were performed to confirm functionality, structural integrity, and validity of newly-built fuel assembly mechanical test facility. Test program includes signal check of data acquisition system, load delivering capacity using real-sized fuel assemblies and a standard loading cylindrical rigid specimen. Fuel assembly's lateral bending test was carried out up to 30 mm of pull-out displacement. Limit case axial compression loading test up to 33 kN was performed to check structural integrity of UCPS (Upper Core Plate Simulator) support frame. Test results show that all test equipment and measurement system have acceptable range of alignment, signal to noise ratio, load carrying capacity limit without loss of integrity. This paper introduces newly constructed fuel assembly's mechanical test facility and summarizes results of functional test for the mechanical test equipment and data acquisition system.

Evaluation of Bearing Capacity on PHC Auger-Drilled Piles Using Artificial Neural Network (인공신경망을 이용한 PHC 매입말뚝의 지지력 평가)

  • Lee, Song;Jang, Joo-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.213-223
    • /
    • 2006
  • In this study, artificial neural network is applied to the evaluation of bearing capacity of the PHC auger-drilled piles at sites of domestic decomposed granite soils. For the verification of applicability of error back propagation neural network, a total of 168 data of in-situ test results for PHC auger-drilled plies are used. The results show that the estimation of error back propagation neural network provide a good matching with pile test results by training and these results show the confidence of utilizing the neural networks for evaluation of the bearing capacity of piles.