• Title/Summary/Keyword: pile roughness

Search Result 27, Processing Time 0.021 seconds

Prediction of the Shaft Resistance of Pile Sockets (암에 근입된 말뚝의 주면저항력 예측)

  • Seidel, J.P.;Cho, Chun-Whan
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.281-293
    • /
    • 2002
  • Empiricism has characterized the traditional methods of pile design; in essence, pile design recommendations are based on the accumulated knowledge of pile behaviour based on the construction and subsequent load testing of piles in soil and rock. In this paper, the traditional approaches to design of piles in rock will be briefly reviewed. It will be shown that the unrelated empirical relationships developed fur rock lead to considerable uncertainty in the design of piles. A new method for predicting the shaft resistance of piles socketed into rock, and based on fundamental principles is outlined. It is shown that the shaft resistance predictions of this method agree well with the field test data for rock and hard soil. It is demonstrated by way of a limited parametric study that shaft roughness and socket diameter are critical factors in the performance of piles constructed in these materials. The application of the method to piles socketed into the granites and gneisses of Korea is discussed by way of a case study and by reference to recent direct shear tests on these rocks.

A Parametric Study for Estimating the Side Performance of Drilled Piers Socketed in Smeared Rock (스미어 현상이 발생한 암반에 근입된 현장타설말뚝의 주변부 거동예측을 위한 변수분석)

  • Kim, Hongtaek;Nam, Yelwoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.5-13
    • /
    • 2008
  • Just as infill material can reduce the shear strength of a rock joint, a layer of soft material between concrete and the surrounding rock socket can reduce pile shaft resistance of drilled shafts socketed in rocks. This can also result from construction methods that leave smeared or remoulded rock or drilling fluid residue on the sides of the rock sockets after concrete placement. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by construction practice. Characteristics of the concrete-rock interface, such as roughness and the presence of the soft materials deposited during or after construction can significantly affect the shaft resistance response of the pile. In this study, we conducted the parametric study to examine the performance characteristics of drilled shafts socketed in smeared rock under the vertical load with the code of finite difference method of FLAC 2D. As the results of the current research, the parameters that affect the settlement of the pile head and the ultimate unit shaft resistance could be identified.

  • PDF

Effect of Coating Layer Hardness on Frictional Characteristics of Diesel Engine Piston Ring (디젤엔진 피스톤 링 코팅 층의 경도에 따른 마찰특성)

  • Jang, J.H.;Joo, B.D.;Lee, H.J.;Kim, E.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.465-470
    • /
    • 2009
  • The frictional behaviors of Cermets/Cr-Ceramics and Cu-Al coatings of piston ring were investigated. Friction tests were carried out by pin-on-disk test and materials properties of coating layer were analyzed by nano indentation tester. The effect of surface roughness of cylinder liner on the friction coefficient was analyzed. This study provided tribological data of hard and soft piston ring coatings against cylinder liner. The surface roughness does exert an influence on the average friction coefficient, with smoother surfaces generally yielding lower friction coefficients. In case of hard-coating, the scratch depth, width and pile-up height had close relationship with hardness. So the scratch width, depth and pile-up height increases with decreasing friction coefficient. But in case of soft-coating, the friction coefficients are strongly dependent on the morphological characteristics such as, scratch depth, width, pile-up height and elastic modulus.

CNS Shear Tests for Granite-Concrete Interlace of drilled shaft (국내 현장타설말뚝의 주면 접촉부에 대한 일정강성도 전단시험)

  • 조천환;이명환;김성회;이혁진;유한규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.147-152
    • /
    • 2003
  • The purpose of this paper is to develope an understanding of fundamental mechanism of shear behaviour between granite and concrete interfaces. The interface of pile socketed in rock can be modeled in laboratory tests by resolving the axisymmetric pile situation into the two dimensional situation under CNS(constant normal stiffness) direct shear condition. In this paper, the granite core samples were used to simulate the interface condition of piles socketed In granite. The samples were prepared in the laboratory to simulate field condition, roughness(angle, height), stress boundary condition, and then tested by CNS direct shear tests. This paper gives some points about shearing behaviour of socket piles into domestic granite through the analysis of CNS tests results.

  • PDF

A Study on Characteristics of the Unit Skin Friction Using the Wall Roughness in the Soft Rock (연암부 벽면거칠기를 이용한 단위주면마찰력 특성에 관한 연구)

  • Hong, Seok-Woo;Hwang, Geun-Bae
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.7-13
    • /
    • 2019
  • In the case of the drilled shaft, one of the methods for calculating unit skin friction stress of rock socket parts is to measure the roughness of the excavated face. This method is to estimate the unit skin frictional resistance using a device which measures the roughness shape of the excavated face in the excavation step. In this study, the roughness shapes of the face of the rock socket part in the drilled shaft were measured directly in the perforated hole and the results are used to identify the characteristics of the unit skin friction of the bedrock. In addition, the static load test and the load transfer test were performed on the same pile to verify the result of the roughness test.

Shear Tests Under Constant Normal Stiffness for Granite-concrete Interface (화강암 절단면과 콘크리트 부착면에 대한 일정강성도 전단시험)

  • 조천환;이명환;유한규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • The purpose of this paper is to make an understanding of fundamental mechanism of shear behaviour between rock and concrete interfaces in the pile socketed into granite. The interface of pile socketed in rock can be modeled in laboratory tests by resolving the axi-symmetric pile situation into the two dimensional situation under CNS(constant normal stiffness) direct shear condition. In this paper, the granite core samples were used to simulate the interface condition of piles socketed in granite in our country. The samples were prepared in the laboratory to simulate field condition, roughness(angle and height), stress boundary condition, and then tested by CNS direct shear tests. This paper describes shearing behaviour of socket piles into domestic granite through the analysis of CNS test results. It was found out that the peak shear strength increases with the angle of asperity and CNS value, and also the dilation increases with the angle of asperity but decreases with the CNS value.

Analysis of Properties of Rubbed Polyimide Alignment Layer and Rubbing Effect of Various Rubbing Cloths for LCD Fabrication (LCD 제조용 러빙포 물성에 따른 러빙된 폴리이미드 배향막의 특성 및 러빙효과 분석)

  • Ahn, Hong-Jun;Lee, Jang-Ju;Ahn, Jong-Soo;Park, Kyung-Chul;Noh, Jae-Gyu;Yoo, Dong-Yeon;Paek, Sang-Hyon
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.385-389
    • /
    • 2011
  • In rubbing process, process factors, the properties of alignment layer and the physical properties of rubbing cloth have acted as important variables. These factors affect the orientation properties of the alignment layer by rubbed extent that is determined by rubbing density and rubbing force. In this work, we studied the effects of rubbing cloths with different pile density and rigidity on rubbing density(length) and rubbing force. As the pile density and rigidity of rubbing cloths increased, the birefringence and the surface roughness of the rubbed alignment layers became bigger, but the characteristics of rubbing-effect had differed each other. The pile density of rubbing cloths which was related with the number of pile, affected the rubbing density(length). On the other hand, the pile rigidity of rubbing was closely related to rubbing force rather than the rubbing density(length).

Turbidity Calibration of Borehole Roughness Measurement System (BKS-LRPS) Usable in Water (수중에서 사용가능한 굴착공 벽면거칠기 측정 시스템(BKS-LRPS)의 굴착공 내 혼탁도 보정에 관한 연구)

  • Park, Bong-Geun;Choi, Yong-Kyu;Kim, Myung-Hak;Kwon, Oh-Kyun;Nam, Moon-S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.25-32
    • /
    • 2008
  • Based on recent studies, the side resistance of rock socketed drilled shafts was affected by unconfined compressive strength of rock, socket roughness, rock types and joints, and initial normal stress. Especially, the socket roughness was affected by rock types and joints, drilling methods, and diameters of pile. In this study, a new roughness measurement system (BKS-LRPS, Backyoung-KyungSung Laser Roughness Profiling System) usable in water was developed. Based on the laboratory model tests, an EMD (Effective Measurement Distances) according to various turbidity was proposed as $EMD=1149.2{\times}T_{b}^{-0.64}$.

A new design chart for estimating friction angle between soil and pile materials

  • Aksoy, Huseyin Suha;Gor, Mesut;Inal, Esen
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.315-324
    • /
    • 2016
  • Frictional forces between soil and structural elements are of vital importance for the foundation engineering. Although numerous studies were performed about the soil-structure interaction in recent years, the approximate relations proposed in the first half of the 20th century are still used to determine the frictional forces. Throughout history, wood was often used as friction piles. Steel has started to be used in the last century. Today, alternatively these materials, FRP (fiber-reinforced polymer) piles are used extensively due to they can serve for long years under harsh environmental conditions. In this study, various ratios of low plasticity clays (CL) were added to the sand soil and compacted to standard Proctor density. Thus, soils with various internal friction angles (${\phi}$) were obtained. The skin friction angles (${\delta}$) of these soils with FRP, which is a composite material, steel (st37) and wood (pine) were determined by performing interface shear tests (IST). Based on the data obtained from the test results, a chart was proposed, which engineers can use in pile design. By means of this chart, the skin friction angles of the soils, of which only the internal friction angles are known, with FRP, steel and wood materials can be determined easily.

An Experimental Study on Increasing Effect of Bearing Capacity and Stiffness by Vertical Micropile (연직 마이크로파일의 지반 지지력 및 강성 증대 효과에 관한 실험적 연구)

  • 이상효;임종철;공영주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.247-254
    • /
    • 2000
  • In this study, the reinforcing effect of micropile for weathered rock is analysed by laboratory model tests. Especially, the effect of the number, the surface roughness, and length of micropile are focused. The results of tests are as follows: $\circled1$ The deformation modulus of reinforced ground is less than equivalent deformation modulus, and $\circled2$ Increasing effect of unconfined compressive strength is not large as times as increasing the number of micropile.

  • PDF