• Title/Summary/Keyword: pile driving analysis

Search Result 75, Processing Time 0.025 seconds

Prediction of Driving Stresses in Piles (항타응력 추정)

  • 진병익;황정규
    • Geotechnical Engineering
    • /
    • v.3 no.1
    • /
    • pp.25-38
    • /
    • 1987
  • The prediction of driving stresses in piles is necessary for optimum selection of driving hammers, better design of precast piles, enact assessment of drivabilities and complete description of piling specifications. However, the existing pile-driving formulas based on the theory of Newtonian impact have some defects and shortcomings; the numerical method by the wave equation analysis using electronic computer usually Involves various uncertainties and limitations which can yield erroneous outcomes because it employs soil constants of which the nature is unknown as essential parameters and ignores the effect of residual stresses set up in the pile .after each hammer blow; and the electronic measuring technique needs extra time and expense. The method developed herein is presented for the purpose of giving field engineers a reliable and convenient analytical procedure for the prediction of driving stresses along the full length of pile using the most effetive parameters without resort to electronic computer. This method is based on the fundamental mechanics of stress waves in elastic rods and takes into account the effect of residual stresses induced by reversed friction in piles.

  • PDF

A Study on the Adoption of Korean Register of Shipping Rules through the Analysis of Pile Driving Boat Capsizing (침몰된 항타선 분석을 통한 한국선급 규칙 적용에 관한 연구)

  • Chung, Won-Jun;Kim, Jeong-Dae;Park, Sung-Boo;Jung, Kwang-Hyo;Lee, Jae-Myung
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • In December 2012, a pile driving boat sunk off the coast of Ulsan port in Korea. The cause of capsizing of these boats was considered a complex problem. Although Korean Ship Safety Technology Authority concluded that leaders (cranes) of the vessel were designed with sufficient safety factors, National Forensic Service concluded that the capsizing was caused by the failure of leaders. This study reviewed the related laws, strength calculations, and structural analysis methods used by the Korea Ship Safety Technology Authority. In addition, numerical simulations were carried out on hydrodynamic analysis and structural analysis to analyze the cause of vessel capsizing based on the rules of the Korean Register of Shipping. The results were similar to those found by National Forensic Service. In conclusion, the study suggested that inspection especially for a pile driving boat subjected to the Korean Register of Shipping rules should be carried out to prevent the similar accident.

Dynamic Response of Underground Three-layered Pipeline Subjected to Pile Driving Loads : I. Distance (건설 현장 항타하중에 의한 지중 삼중관 진동 거동: I. 이격 거리)

  • Kim, Moon-Kyum;Won, Jong-Hwa;Choi, Joung-Hyun;Yoo, Han-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.58-66
    • /
    • 2011
  • This study presents the behavior characteristics of buried three-layered pipeline subjected to pile driving loads. The analysis considered the driving energy caused by 7 tonf of ram weight and 1.2m of stroke. Also the distance from vibration resource to pipeline varies in 5m to 30m. The vibration velocity and stress are investigated at the center of pipeline in longitudinal direction. In the same cover depth, attenuation ratio of vibration velocity and von Mises stresses for distance increment has shown a decreasing trend. The maximum stress occurs at the top and bottom for the inner pipe, however, an irregular stress distribution is found for the outer pipe.

Case studies on construction and design in Colombo port, Sri Lanka (스리랑카 콜롬보항만 시공 및 설계사례 (ELIPO 및 COLPO 현장))

  • Lee, Seung-Won;Chung, Yoon-Young;Lee, Gab-Yeol;Park, Kyoung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.44-57
    • /
    • 2010
  • The purpose of this paper is to introduce case studies on 2 projects for the construction of port facilities in Colombo, Sri lanka. In Queen Elizabeth quay development project in 2000, the damage at the bottom of steel tubular piles were occurred when piles were driven into subsoil for piled wharf structure in Stage 1. In order to prevent same incident in Stage 2 & 3, the pile driveability analysis were executed by dynamic formulas, analysis program, test driving and pile load tests. Through pile driveability analysis, prevention plans were proposed. In Colombo port expansion project in 2008, the mv method was applied to predict a primary consolidation settlement of a subsoil under a breakwater in the calculation stage. The $m_v$ was estimated from results of cone penetration tests and the final settlement by consolidation was calculated with it.

  • PDF

Numerical Study for Application of Sheet Pile Retaining Wall Reinforced with H-pile (H-pile로 보강된 Sheet pile 흙막이 벽체의 적용을 위한 수치해석)

  • Cho, Kwangjun;Jun, Sanghyun;Suh, Jeeweon;Yoo, Namjae;Park, Byungsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.7
    • /
    • pp.23-33
    • /
    • 2015
  • This paper is results of numerical study for application of sheet pile retaining wall reinforced with H-pile as sheet piles are needed in field for a cutoff wall and are limited to use because of driveability in the ground condition of having a larger strength than a weathered rock. Extensive 101 cases of numerical approach were conducted to investigate the behavior of sheet pile retaining wall reinforced with H-pile, changing installing members of two types of sheet pile and three types of H-pile, the embedded depth of sheet pile and H-pile, the horizontal space between H-piles and excavation conditions. As the results of numerical analysis, combined use of the sheet pile SP-IIIA with H-Pile H250 and the sheet pile SP-IV with H-Pile H350 among precast products was found to be efficient since two members tended to reach allowable stresses simultaneously or have similar stress concentration ratios. Increased stiffness in reinforced sheet pile showed reduction of lateral displacement of wall. Embedded depth of sheet pile did not affect stability of wall significantly so that driving the penetrable depth of sheet pile should be enough to maintain stability of wall and satisfy purposes of cutoff and stiffness increase of wall.

An analysis of problems and countermeasures in the installation of plastic greenhouse on reclaimed lands (간척지에 플라스틱 온실 설치 시의 문제점 분석 및 개선방안)

  • Yu, In-Ho;Ku, Yang-Gyu;Cho, Myeong-Whan;Ryu, Hee-Ryong;Moon, Doo-Gyung
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.473-480
    • /
    • 2014
  • Upon setting up a dedicated plastic greenhouse for tomato cultivation developed by the Rural Development Administration on the Gyehwa reclaimed land, this study was aimed at analyzing the problems can be occurred in the installation of plastic greenhouse on reclaimed lands as well as finding out solutions for improvement. A relatively cheaper wooden pile was used in the installation in order to supplement the soft ground conditions. Based on the results of ground investigation of the installation site, both the allowable bearing capacity and pulling resistance of the wooden pile with a diameter of 150 mm and a length of 10 m were computed and came out to be 30.645 kN. It was determined that the values were enough to withstand the maximum compressive force (17.206 kN) and the pullout force (20.435 kN) that are generally applied to the greenhouse footing. There are three problems aroused in the process of greenhouse installation, and the corresponding countermeasures are as follow. First, due to the slightly bent shape of the wooden pile, there were phenomenon such as deviation, torsion, and fracture when driving the pile. This could be prevented by the use of the backhoe (0.2) rotating tongs, which are holding the pile, to drive the pile while pushing to the direction of the driving and fixing it until 5 m below ground and applying a soft vibrating pressure until the first 2 m. Second, there exists a concrete independent footing between the column of the greenhouse and the wooden pile driven to the underground water level. Since it is difficult to accurately drive the pile on this independent footing, the problem of footing baseplate used to fix the column being off the independent footing was occurred. In order to handle with this matter, the diameter of the independent footing was changed from 200 mm to 300 mm. Last, after films were covered in the condition that the reinforcing frame and bracing are not installed, there was a phenomenon of columns being pushed away by the strong wind to the maximum of $11m{\cdot}s^{-1}$. It is encouraged to avoid constructions in winter, and the film covering jobs always to be done after the frame construction is completely over. The height of the independent footing was measured for 9 months after the completion of the greenhouse installation, and it was found to be within the margin of error meaning that there was no subsidence. The extent to the framework distortion and the value of inclinometers as well showed not much alteration. In other words, the wooden pile was designed to have a sufficient bearing capacity.

Analysis of the behavior of gray rockfish (Sebastes schlegelii Hilgendorf) on the construction of wind power generators in the sea area around Byeonsan Peninsula, Korea (변산반도 주변해역에서 풍력발전기 건설공사에 대한 조피볼락(Sebastes schlegelii Hilgendorf )의 행동분석)

  • HEO, Gyeom;HWANG, Doo-Jin;MIN, Eun-Bi;OH, Sung-Yong;PARK, Jin Woo;SHIN, Hyeon-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.2
    • /
    • pp.129-137
    • /
    • 2019
  • This study was conducted to investigate the effects of underwater noise caused by pile driving during marine construction on fish. In this study, the three gray rockfish were released about 1 km away from the construction site of wind power generation on July 18, 2018 and traced using two acoustic telemetry techniques. The behavior of the fish was analyzed by calculating the moving distance, swimming speed and direction of the gray rockfish. In the results of the acoustic tracking using the ship, the rockfish moved about 2.11 km for about two hours at a speed of $0.28{\pm}0.14m/s$ (0.94 TL/s). The bottom depth of the trajectory of the rockfish was $1.0{\pm}0.6m$ on average. There was a significant directionality in swimming direction of the gray rockfish, and there was no significant correlation between the swimming direction and tidal current direction. Moving distance during 5 minutes (5MD) during pile driving and finishing operations between rock surface and bedrock were 0.94-0.96 times (76.0-77.0 m) and 1.81-2.73 times (146.0-219.5 m), respectively, compared with no pile driving. This study is expected to be used as a basic data of fish behavior research on underwater noise.

Comparison of the methods used in determining the pile design load (말뚝의 설계하중 결정방법에 대한 비교)

  • 이명환;윤성진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.03a
    • /
    • pp.69-102
    • /
    • 1992
  • The estimation of pile bearing capacity is important since the design details are determined from the result. There are numerous ways of determining the pile design load, but only few of them are chosen in the actual design. According to the recent investigation in Korea, the formulae proposed by Meyerhof based on the SPT N values are most frequently chosen in the design stage. During construction pile driving formulae are used and sometimes the pile loading tests are performed. In this paper the three methods are studied and compared. It is concluded that except the estimation made by pile loading test, the reliability of estimation is very poor. And the analysis of pile loading test would involve serious errors unless the end bearing capacity is measured separatly from the skin friction capacity. It is thus suggested that the separate measurement of end bearing capacity and skin friction capacity is the most reliable way of determining the pile design load.

  • PDF

Numerical Analysis of Helical Pile Behavior Varying Number and Diameter of Helices (헬릭스 개수 및 직경에 따른 헬리컬 파일 거동의 수치해석적 분석)

  • Bak, Jongho;Lee, Kicheol;Choi, Byeong-Hyun;Kim, Dongwook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.211-217
    • /
    • 2019
  • Oil extraction from oil sands, a non-traditional crude oil resource, is attracting attention as the oil price fluctuates due to recent economical and political issues. Many oil sands sites are mainly located in the polar regions. For plant construction to extract crude oil from oil sands in harsh environment of the polar regions, fast and simple installation of plant foundation is necessary. However, typically-used conventional foundations such as drilled shafts and driven piles are not suitable to construct under cold temperature and organic surface layers. In this study, helical piles enabling rapid and simple constructions using small rotary equipment without driving or excavation was considered. The helical pile consists of steel shaft and several helices attached to the steel shaft; therefore, the behavior of the helical pile depends on the number and shape of the helices. The effect of the helices' configuration (number and diameter of helices) on helical pile behavior was analyzed based on the numerical analysis results.