• Title/Summary/Keyword: pile capacity

Search Result 752, Processing Time 0.049 seconds

Horizontal Bearing Characteristics of Micropiles with the Length Ratio and Installation Angle of Pile (파일길이비와 파일설치각도에 따른 마이크로파일 수평지지특성)

  • Oh, Joung-Bae;Hwang, Tae-Hyun;Huh, In-Goo;Shin, Jong-Ho;Kwon, Oh-Yeob
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.5-13
    • /
    • 2015
  • Micropile was mainly used as one of underpinnig methods, and recently has been used for the various purposes such as foundation for new structure or slope stability etc. However, despite of the increase of the usage of micropile, studies about the horizontal bearing characteristic of micropile are insufficient. Thus the model test has been conducted to investigate the horizontal bearing characteristics of micropile with the length ratio and installation angle of pile. Consequently, micropiles at the installation angle of $+30^{\circ}$ and $-30^{\circ}$ effectively increase the horizontal bearing capacity, respectively for L/d ${\leq}25$ and L/d > 50.

Behaviour Characteristics of Sand Compaction Pile with varying Area Replacement Ratio (모래다집말뚝(SCP)의 치환율 변화에 따른 거동 특성 연구)

  • 박용원;김병일;윤길림;이상익;문대중;권오순
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.117-128
    • /
    • 2000
  • Sand compaction pile(SCP) is one of the ground improvement techniques which is being used for not only accelerating consolidation but also increasing bearing capacity of loose sands or soft clay grounds. In this study, laboratory model test and large-scale direct shear test were performed to investigate the effects of area replacement ratio of composite ground in order to find out the optimum value of area replacement ratio for the ground improvement purpose. Area replacement ratios of 20%, 30%, 40%, 50%, 60% were chosen respectively in the model tests to study the effects of area replacement ratio on variations of stress concentration ratio, settlement and shear strength characteristics of composite ground. In large-scale direct she4ar tests, area replacement ratios of 20%, 30%, 46% were applied to study their effects on shear strength characteristics of composite ground.

  • PDF

The Characterization of Surface Roughness of the Drilled Shaft into Rock (암반에 근입된 현장타설말뚝의 벽면거칠기 특성)

  • Cho, Chun-Hwan;Lee, Myung-Hwan;Yoo, Han-Kyu;Kwon, Hyung-Gu;Park, Eon-Sang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.2
    • /
    • pp.5-13
    • /
    • 2003
  • The domestic design method for the shaft resistance of drilled shafts into a bedrock is based on the empirical method, where the uniaxial compressive strength of rock specimen is utilized for calculation of the shaft resistance. This method has uncertainties in prediction of capacity of drilled shafts and result in uneconomic engineering design. Recently a new improved design method was suggested, which reflects important factors that affect the strength of pile sockets. Socket roughness is one of the significant factors influencing the shaft resistance of drilled shaft socketed into rock. In this paper roughness information for the shaft resistance design of socket pile was suggested on the basis of statistical analysis of data measured from wall surface in the bore holes of drilled shafts.

  • PDF

A Study on Prediction of Moment Developed in Bottom of Foundations between Pile and Heterogeneous Soils (말뚝기초와 이질지반 경계부 기초저판에서의 발생모멘트 예측에 관한 연구)

  • Lim, Hae-Sik;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.2 no.3
    • /
    • pp.277-285
    • /
    • 2011
  • To reinforce bearing capacity-changed section or different foundation in the same building, empirical or simple tools have been used. To solve this problem, an analytical solution which can evaluate and reinforce the stability of foundation is introduced. To suggest a clue for the problems, current foundation reinforcing method is studied through recent literature studies and the structural analyses of foundation slab are performed on the pile foundation of 49$m^2$, 59$m^2$ and 84$m^2$ I type apartments in 15 story building. The analyses are conducted with SAP 2000, a computer program for ordinary structural analysis. To predict the moments of slab by ground non-uniformity, the structural analysis results for the foundation slab of 3 types 15 story apartment buildings in 49$m^2$, 59$m^2$ and 84$m^2$ I type on non-uniformity ground are shown in the diagrams.

Variation of Stress Concentration Ratio with Area Replacement Ratio for SCP-Reinforced Soils under Quay Wall (치환율에 따른 안벽구조물 하부 SCP 복합지반의 응력분담비)

  • 김윤태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.1
    • /
    • pp.18-26
    • /
    • 2004
  • In order to accelerate the rate of consolidation settlement, to reduce settlement, and to increase bearing capacity for soft ground under quay, sand compaction pile method (SCP) has usually been applied. SCP-reinforced ground is composite soil which consists of the sand pile and the surrounding soft soil. One of main important considerations in design and analysis for SCP-reinforced soils is stress concentration ratio according to area replacement ratio. In this paper, the numerical analysis was conducted to investigate characteristics of stress concentration ratio in composite ground. It was found that stress concentration ratio of composite ground is not constant as well as depends on several factors such as area replacement ratio, depth of soft soil, and consolidation process. The values of stress concentration ratio increase during loading stage due to stress transfer of composite soil, and reach up to 2.5∼12 according to area replacement ratio at the end of construction. After the end of consolidation, however, these values are converged to 2.5 to 6.0 irrespective of area replacement ratio due to increase in effective stress of soft soil during consolidation process.

Pull-out Resistance Capacity Evaluation of Perfobond Rib Shear Connector (유공강판 전단연결재의 인발저항성능 평가)

  • Kim, Young-Ho;Koo, Hyun-Bon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.853-859
    • /
    • 2008
  • As a new system of steel pipe pile cap reinforcement, the application of perforated flat bar bolted to the steel pipe pile head was suggested for the improvement of structural performance of footing structure. This study investigates the structural characteristics of perforated flat bar shear connectors according to shape and diameter of hole, number of rebars passing through the hole and the depth of settlement. The result shows several requirements to ensure sufficient pull-out resistance and ductility such as that the hole diameter excluding diameter of rebar should exceed the size of aggregates; the hole should be perforated with diameter as the half of plate height; and the adequate depth of settlement should be ensured for the optimal performance.

The Structrual Behavior of Eccentrically Loaded Hybrid FRP-Concrete Composite Columns (편심재하된 하이브리드 FRP-콘크리트 합성 기둥의 구조적 특성)

  • Choi, Jin-Woo;Seo, Su-Hong;Park, Joon-Soek;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.1-8
    • /
    • 2013
  • Pile foundations constructed by the fiber reinforced polymer plastic piles have been used in coastal and oceanic regions in many countries. Generally, fiber reinforced polymer plastic piles are consisted of filament winding FRP which is used to wrap the outside of concrete pile to increase the axial load carrying capacity or pultruded FRP which is located in the core concrete to resist the bending moment arising due to eccentric loading. In this paper, the analytical procedures of hybrid concrete filled FRP tube flexural members are suggested based on the CFT design method. Moreover, the analytical results are compared with the experimental results to obtained by the previous researches. The results of comparison analyses are performed to estimate the accuracy of the analytical procedure for hybrid FRP-concrete composite compression test, members under eccentrical loading.

Study on Lond Transfer Characteristics of Sand Compaction Piles in Soft Soil Deposits (연약지반의 모래다짐말뚝에 대한 하중전이 연구)

  • Kim Jaekwon;Kim Soo-Il;Jung Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.183-196
    • /
    • 2004
  • Sand Compaction Pile (SCP) is a soft-ground improvement technique used for not only accelerating consolidation but also increasing bearing capacity of soils. In this study, laboratory tests and 3-D finite element analysis were peformed to investigate the characteristics of load transfer in SCP with an emphasis on free-strain behavior of piles with low replacement ratios in the range of 30 to $50\%$. Through these focused tests and numerical analyses, we proposed a simplified method to analyze the load transfer characteristics of SCP in soft ground. Moreover, it was shown that estimated normal stresses in SCP using the proposed method were in a reasonable agreement with actual values.

Evaluation of the q-w Curve on Rock-Socketed Drilled Shafts by Triaxial Compression Tests (삼축압축시험을 통한 암반에 근입된 현장타설말뚝의 선단 하중전이곡선 산정)

  • Kim, Tae-Hyung;Kim, Yong-Min;Jeong, Sang-Seom
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.455-465
    • /
    • 2008
  • In this study, the load distribution and deformation of rock-socketed drilled shafts subjected to axial load are investigated based on small scale model tests. In order to analyze the effects of major influencing factors of end bearing capacity, Hoek-cell triaxial tests were performed. From the test results, it was found that the initial slope of end bearing load transfer (q-w) curve was highly dependent on rock mass modulus and pile diameter, while the ultimate unit toe resistance ($q_{max}$) was influenced by rock mass modulus and the spacing of discontinuities. End bearing load transfer function of drilled shafts socketed in rock was proposed based on the Hoek-cell triaxial test results and the field loading tests which were performed on granite and gneiss in South Korea. Through the comparison with pile load tests, it is found that the load-transfer curve by the present study is in good agreement with the general trend observed by field loading tests, and thus represents a significant improvement in the prediction of load transfer of drilled shaft.

  • PDF

Load transfer characteristics and bearing capacity of micropiles (마이크로파일의 하중전이특성 및 지지성능 분석)

  • Goo, Jeong-Min;Choi, Chang-Ho;Cho, Sam-Deok;Lee, Ki-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.899-904
    • /
    • 2009
  • This paper presents the analysis result of load-transfer mechanism and pile movements associated with the development of frictional resistance to understand the engineering characteristics of micropile behavior. An field load tests were performed for two different types of micropiles and they are (i) thread bar reinforcement with D=50mm and (ii) hollow steel pipe reinforcement with $D_{out}$=82.5mm and $D_{in}$=60.5mm and wrapped with woven geotextile for post-grouting. The load test results indicated that micropiling with pressured grouting provided better load-transfer characteristics than micropiling with gravity grouting under both compressive and tensile loading conditions in that unit skin frictional resistance is well distributed along installation depth. The unit weight and unconfined compressive strength of cured grout were obtained for each piling method. The strength and unit weight of micropile with pressured grouting was higher than those with gravity grouting. The fact that load bearing quality with pressured grouting is better than that of gravity grouting could be attributed to the dense mutual adhesion between surrounding ground and pile due to pressurized grouting method and better grout quality.

  • PDF