• Title/Summary/Keyword: piggery waste water

Search Result 18, Processing Time 0.021 seconds

Study on Characteristics of Piggery Waste and Processing Sludge for Reuse (재활용을 위한 양돈폐수와 공정슬러지의 특성연구)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.308-313
    • /
    • 2006
  • Charicteristics of piggery waste and treatment processing sludges for reuse were investigated. If it was thoroughly regulated in disinfectants, antibiotic substances and heavy metals, raw piggery waste can be gratified in criteria for fermentative compost (liquid) for flowers cultivation. Also, Because it is satisfied with various criteria of heavy metals and fertilizer contents for reuse except water content, primary pre-treatment sludge is very good material for composting. If provated goods on heavy metals are used in coagulation & dewatering process, coagulation & dewatering sludges are suitable for criteria of special waste regulation and by-product compost. This study proves that, if they are accomplished with suitable composting and mature process, piggery waste and processing sludges are free from microbiological problems as well as criteria of composting.

Effect of Temperature and Pre-treatment for Elutriated Acidogenic Fermentation of Piggery Waste (돈사폐수의 세정산발효시 온도와 전처리의 영향)

  • Bae, Jin-Yeon;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.34-39
    • /
    • 2005
  • The performance of elutriated acid fermentation with slurry-type piggery waste was investigated, especially to evaluate the effects of temperature and pre-treatment. In the first phase, the acid elutriation reactor with piggery waste after centrifugation operated at both mesophilic and thermophilic conditions to evaluate the effect of temperature. Solubilization yield($gVFAs/gSCOD_{prod.}$) and acidification rate($gVFAs/gSCOD_{prod.}$) in the thermophilic digestion were 0.45 and 0.55, which were higher than those of the mesophilic digestion, 0.25 and 0.45. In addition, the acid elutriation reactor at thermophilic temperature is more effective in removing e-coli. In the second phase, the acid elutriation reactor was fed with piggery waste before centrifugation. With piggery wastes before centrifugation, the solubilization yield and the acidificaton rate were 0.40 and 0.80, respectively, which were higher than the rates using piggery waste after centrifugation at both mesophilic and thermophilic conditions. The higher sludge volume reduction of 80% benefits sludge management. Furthermore, economical advantages can be achieved by removing the pre-treatment process, such as centrifugation. Consequently, the treatment with piggery waste before centrifugation proved to be effective. Also, the optimum temperature condition was estimated at mesophilic or thermophilic conditions, considering solubilization yields and acidification rates, though the system should be heated.

Piggery Waste Treatment using Improved MLE Process in Full-Scale (수정된 MLE 공정을 이용한 Full-Scale에서의 돈사분뇨처리)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.895-904
    • /
    • 2006
  • The improved MLE (modified Ludzack-Ettinger) process was operated for piggery waste treatment in full-scale public livestock waste treatment plant. The treated waste from bioreactor was suitable for the strict effluent standard of 200 mgCOD/L and 60 mgTN/L as it was dewatered chemically without settling tank and passed through filtration process. Though this treatment method produced a great deal of sludge ($6.4m^3\;per\;m^3$ dewatered piggery waste) it was able to accomplish predominant effluent quality by removing non-biodegradable COD and color without advanced oxidation process as ozone, fenton and etc.. The nitrogen removal efficiency of bioreactor was rapidly declined from March to May (from 0.016 to 0.005 kgN/kgVSS-day) when disinfection is in earnest as well as from warm season when reactor temperature rises higher than $35^{\circ}C$(from 0.016 to 0.008 kgN/kgVSS-day). This study proves that counterplanes for infection residuals, bioreactor temperature and dewatering sludge reduction are necessary for piggery waste treatment.

Nitrite Accumulation of Anaerobic Treatment Effluent of Slurry-type Piggery Waste (슬러리상 돈사폐수의 혐기성 처리수의 아질산성 질소 축적)

  • Hwang, In-Su;Min, Kyung-Sok;Yun, Zuwhan
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.711-719
    • /
    • 2006
  • The effluent from anaerobic digestion process of slurry-type piggery waste has a characteristic of very low C/N ratio. Because of high nitrogen content, it is necessary to evaluate nitrogen removal alternative rather than conventional nitrification-denitrification scheme. In this study, two parallel treatment schemes of SBR-like partial nitritation reactor coupled with anaerobic ammonium oxidation (ANAMMOX) reactor, and a nitritation reactor followed by nitrite denitrification process were evaluated with a slurry-type piggery waste. The feed to reactors adjusted with various $NH_4-N$ and organics concentration. The nitrite accumulation was successfully accomplished at the loading rate of about $1.0kgNH_4-N/m^3-day$. The $NO_2-N/NH_4-N$ ratio 1~2.6 in nitritated effluent that operated at HRT of 1 day indicated that SBR-like partial nitritation was applicable to ANAMMOX operation. Meanwhile, the nitrite accumulation of 87% was achieved at SBR operated with HRT of 3 days and $0.4mgO_2/L$ for denitritation. Experimental results further suggested that HRT (SRT) and free ammonia(FA) rather than DO are an effective control parameter for nitrite accumulation in piggery waste.

Anaerobic Treatment of Piggery Slurry - Review -

  • Chynoweth, D.P.;Wilkie, A.C.;Owens, J.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.607-628
    • /
    • 1999
  • The swine waste industry is growing rapidly along with the world human population. The trend is toward more concentrated piggeries with numbers of herds in the thousands. Associated with these increased herds are large quantities of wastes, including organic matter, inorganic nutrients, and gaseous emissions. The trend in swine waste management is toward treatment of these wastes to minimize negative impact on the health and comfort of workers and animals and the atmosphere, water, and soil environments. Treatment of these wastes has traditionally involved land application, lagoons, oxidation ditches, and conventional batch and continuously stirred reactor designs. More sophisticated treatment systems are being implemented, involving advanced anaerobic digester designs, integrated with solids separation, aerobic polishing of digester effluents, and biological nutrient removal. This review discusses the present and future role of anaerobic processes in piggery waste treatment with emphasis on reactor design, operating and performance parameters, and effluent processing.

Electro-chemical Removal Properties of Water Pollutants by Ag-ACF from Piggery Waste

  • Oh, Won-Chun;Bae, Jang-Soon;Ko, Young-Shin
    • Carbon letters
    • /
    • v.7 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • The electro-chemical removal (ECR) of water pollutants by metal-ACF electrodes from wastewater was investigated over wide range of ECR time. The ECR capacities of metallic ACF electrodes were related to physical properties such as adsorption isotherm, surface area and pore size and to reaction time. Surface morphologies and elemental analysis for the metal supported ACFs after electro-catalytic reaction were investigated by scanning electron microscopy (SEM) and energy disperse X-ray (EDX) to explain the changes in adsorption properties. The IR spectra of metallic ACFs for the investigation of functional groups show that the electro-catalytic treatment is consequently associated with the removal of pollutants with the increasing surface reactivity of the activated carbon fibers. The metal-ACFs were electro-catalytically reacted to waste water to investigate the removal efficiency for the COD, T-N, $NH_4$-N, $NO_3$-N and $NO_2$-N. From these removal results of the piggery waste using metallic ACFs substrate, satisfactory removal performance was achieved. The removal efficiency of the metallic ACFs substrate was mainly determined by the properties of the material for adsorption and trapping of organics, and catalytic effects.

  • PDF

Operation Characteristics of an UASB at High Organic Loading Condition for Thermal Elutriated Acids of Piggery Wastewater Treatment (가축분뇨 고온 세정산발효액 처리를 위한 고부하 조건에서의 UASB 운전특성)

  • Kwon, Koo-Ho;Jung, Yong Jun;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.781-785
    • /
    • 2012
  • This study was carried out to treat the thermal elutriated acids of piggery wastewater using UASB process. The UASB reactor was operated at an organic loading rate (OLR) of $7.4\;kgCOD/m^3-day$ (6.5 ~ 9.0). During the start-up period, the low COD removal efficiency (20%) was caused by shock loading and instability in the reactor. It was mainly due to the high concentration amounts of ammonia nitrogen, which caused inhibitory and toxic effects to toward the anaerobic bacteria. In steady state, the UASB reactor showed a SCOD removal efficiency of 71% and a VS removal efficiency of 39%. The gas production and methane content were 1.3 L/day $(0.21\;m^3\;CH^4/kg$ COD removed) and 77%, respectively.

Removal Efficiency of the Pollutants from Piggery Wastes with Activated Carbon Treated with Metal and Their Pilot Scale Design

  • Oh, Won-Chun;Park, Chong-Sung;Bae, Jang-Soon;Ko, Young-Shin
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.180-187
    • /
    • 2006
  • The treatment of piggery wastes was carried out at pilot scale using a multilayered metal-activated carbon system followed by carbon bed filtration. The physicochemical properties were obtained from treated samples with aqueous solutions containing metallic ions such as $Ag^+$, $Cu^{2+}$, $Na^+$, $K^+$ and $Mn^{2+}$, which main obsevations are subjected to inspect surface properties, color removal properties by Uv/Vis and EDX. Multilayered metal-activated carbons were contacted with waste water to investigation of the simultaneous catalytic effect for the COD, BOD, T-N and T-P removal. The removal results for the piggery waste using multilayered metal-activated carbon bed was achieved the satisfactory removal performance under permitted values of Ministry of Environment of Korea. The high efficiency of the multilayered metal-activated carbon bed was determined by the performance of this material for trapping, catalytic effect and adsorption of organic solid particles.

  • PDF

Piggery Waste Treatment using Partial Nitritation and Anaerobic Ammonium Oxidation (부분질산화와 혐기성 암모늄산화를 이용한 돈사폐수처리)

  • Hwang, In-Su;Min, Kyung-Sok;Lee, Young-Ok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.599-604
    • /
    • 2006
  • Nitrogen removal with the combined SHARON (Single reactor system for high ammonium removal over nitrite)ANAMMOX (Anaerobic ammonium oxidation) process using the effluent of ADEPT (Anaerobic digestion elutriated phased treatment) slurry reactor with very low C/N ratio for piggery waste treatment was investigated. For the preceding SHARON reactor, ammonium nitrogen loading and removal rate were $0.97kg\;NH_4-N/m^3_{reactor}/day$ and $0.68kg\;NH_4-N/m^3_{reactor}/day$ respectively. In steady state, bicarbonate alkalinity consumption for ammonium nitrogen converted to $NO_2-N$ or $NO_3-N$ was 8.4 gram per gram ammonium nitrogen. The successive ANAMMOX reactor was fed with the effluent from SHARON reactor. The loading and removal rate of the soluble nitrogen defined as the sum total of $NH_4-N$, $NO_2-N$ and $NO_3-N$ in ANAMMOX reactor were $1.36kg\;soluble\;N/m^3_{reactor}/day$ and $0.7kg\;soluble\;N/m^3_{reactor}/day$, respectively. The average $NO_2-N/NH_4-N$ removal ratio by ANAMMOX was 2.41. Fluorescence in situ hybridization (FISH) analysis verified that Candidatus Kuenenia stuttgartiensis were dominate, which means that they played an important role of nitrogen removal in ANAMMOX reactor.

Effects of various Nitrite and Ammonium Nitrogen Concentrationes in the Application of ANAMMOX of Piggery Waste (돈사폐수의 ANAMMOX 적용에 있어서 아질산성 질소 및 암모니아성 질소의 농도에 따른 영향)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.482-491
    • /
    • 2006
  • The anaerobic ammonium oxidation (ANAMMOX) from substrates with various $NO_2-N$ and $NH_4-N$ concentationes, which were generated from piggery waste was accomplished by using anaerobic granular sludge as seeding sludge. As the result of operation, when $NO_2-N/NH_4-N$ ratios of ANAMMOX influent were 0.6~1.5, $NO_2-N/NH_4-N$ removal ratios were exhibited 1.19~2.07 (average 1.63). The higher influent $NO_2-N/NH_4-N$ ratios resulted in higher $NO_2-N/NH_4-N$ removal ratios by ANAMMOX. It means that $NO_2-N$ concentration is very important factor in ANAMMOX. Specific ammonium removal rate was constantly as $0.03{\sim}0.04gNH_4-N/g$ VSS-day at $35^{\circ}C$ while it was $0.01gNH_4-N/g$ VSS-day at $20{\sim}30^{\circ}C$. Thus, in order to reduce the effluent N concentration, either an increase of ANAMMOX reactor HRT or more biomass accumulation at the optimal temperature can be considered.