• 제목/요약/키워드: piezoresistive effects

검색결과 7건 처리시간 0.023초

고무 복합재료의 압저항 효과 (Rubber Composites with Piezoresistive Effects)

  • 정준호;윤주호;김일;심상은
    • Elastomers and Composites
    • /
    • 제48권1호
    • /
    • pp.76-84
    • /
    • 2013
  • 압저항 효과(piezoresistive effect)는 가해진 외부 압력이나 힘에 의해 전기적 저항이 변하는 것을 말한다. 이러한 압저항 효과는 압력, 진동, 가속 등을 탐지하는 센서에 많이 이용되고 있다. 압저항 효과를 갖는 재료가 많지만 그 중에서도 특히, 전도성 충전제를 첨가한 고무 복합체는 충전제의 종류, 입자 크기, 입자 모양, 입자 종횡비(aspect ratio), 그리고 입자의 양 등을 조절하여 다양한 압력 범위에서의 압저항 효과를 발현할 수 있고, 고무를 기질로 사용함으로써 복합체에 탄성과 유연성을 줄 수 있기 때문에 많은 관심을 받고 있다. 본 논문에서는 압저항 효과의 기본원리 및 다양한 고무 복합체의 압저항 효과에 대해 알아본다.

Design and Fabrication of Six-Degree of Freedom Piezoresistive Turbulent Water Flow Sensor

  • Dao, Dzung Viet;Toriyama, Toshiyuki;Wells, John;Sugiyama, Susumu
    • 센서학회지
    • /
    • 제11권4호
    • /
    • pp.191-199
    • /
    • 2002
  • This paper presents the design concept, theoretical investigation, and fabrication of a six-degree of freedom (6-DOF) turbulent flow micro sensor utilizing the piezoresistive effect in silicon. Unlike other flow sensors, which typically measure just one component of wall shear stress, the proposed sensor can independently detect six components of force and moment on a test particle in a turbulent flow. By combining conventional and four-terminal piezoresistors in Si (111), and arranging them suitably on the sensing area, the total number of piezoresistors used in this sensing chip is only eighteen, much fewer than the forty eight piezoresistors of the prior art piezoresistive 6-DOF force sensor.

Synergistic effects of CNT and CB inclusion on the piezoresistive sensing behaviors of cementitious composites blended with fly ash

  • Jang, Daeik;Yoon, H.N.;Yang, Beomjoo;Seo, Joonho;Farooq, Shah Z.;Lee, H.K.
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.351-359
    • /
    • 2022
  • The present study investigated the synergistic effects of carbon nanotube (CNT) and carbon black (CB) inclusions on the piezoresistive sensing behaviors of cementitious composites. Four different CNT and CB combinations were considered to form different conductive networks in the binder material composed of Portland cement and fly ash. The cement was substituted with fly ash at levels of 0 or 50% by the mass of binder. The specimens were cured up to 100 days to observe the variations of the electrical characteristics with hydration progress, and the piezoresistive sensing behaviors of the specimens were measured under cyclic loading tests. The fabricated specimens were additionally evaluated with flowability, resistivity and cyclic loading tests, and morphological analysis. The scanning electron microscopy and energy disperse X-ray spectroscopy test results indicated that CNT and CB inclusion induced synergistic formations of electrically conductive networks, which led to an improvement of piezoresistive sensing behaviors. Moreover, the incorporation of fly ash having Fe3+ components decreased the electrical resistivity, improving both the linearity of fractional changes in the electrical resistivity and reproducibility expressed as R2 under cyclic loading conditions.

고충격 미소가속도계의 압저항-구조 연성해석 및 최적설계 (Piezoresistive-Structural Coupled-Field Analysis and Optimal Design for a High Impact Microaccelerometer)

  • 한정삼;권순재;고종수;한기호;박효환;이장우
    • 한국군사과학기술학회지
    • /
    • 제14권1호
    • /
    • pp.132-138
    • /
    • 2011
  • A micromachined silicon accelerometer capable of surviving and detecting very high accelerations(up to 200,000 times the gravitational acceleration) is necessary for a high impact accelerometer for earth-penetration weapons applications. We adopted as a reference model a piezoresistive type silicon micromachined high-shock accelerometer with a bonded hinge structure and performed structural analyses such as stress, modal, and transient dynamic responses and sensor sensitivity simulation for the selected device using piezoresistive-structural coupled-field analysis. In addition, structural optimization was introduced to improve the performances of the accelerometer against the initial design of the reference model. The design objective here was to maximize the sensor sensitivity subject to a set of design constraints on the impact endurance of the structure, dynamic characteristics, the fundamental frequency and the transverse sensitivities by changing the dimensions of the width, sensing beams, and hinges which have significant effects on the performances. Through the optimization, we could increase the sensor sensitivity by more than 70% from the initial value of $0.267{\mu}V/G$ satisfying all the imposed design constraints. The suggested simulation and optimization have been proved very successful to design high impact microaccelerometers and therefore can be easily applied to develop and improve other piezoresistive type sensors and actuators.

Deep learning-based LSTM model for prediction of long-term piezoresistive sensing performance of cement-based sensors incorporating multi-walled carbon nanotube

  • Jang, Daeik;Bang, Jinho;Yoon, H.N.;Seo, Joonho;Jung, Jongwon;Jang, Jeong Gook;Yang, Beomjoo
    • Computers and Concrete
    • /
    • 제30권5호
    • /
    • pp.301-310
    • /
    • 2022
  • Cement-based sensors have been widely used as structural health monitoring systems, however, their long-term sensing performance have not actively investigated. In this study, a deep learning-based methodology is adopted to predict the long-term piezoresistive properties of cement-based sensors. Samples with different multi-walled carbon nanotube contents (0.1, 0.3, and 0.5 wt.%) are fabricated, and piezoresistive tests are conducted over 10,000 loading cycles to obtain the training data. Time-dependent degradation is predicted using a modified long short-term memory (LSTM) model. The effects of different model variables including the amount of training data, number of epochs, and dropout ratio on the accuracy of predictions are analyzed. Finally, the effectiveness of the proposed approach is evaluated by comparing the predictions for long-term piezoresistive sensing performance with untrained experimental data. A sensitivity of 6% is experimentally examined in the sample containing 0.1 wt.% of MWCNTs, and predictions with accuracy up to 98% are found using the proposed LSTM model. Based on the experimental results, the proposed model is expected to be applied in the structural health monitoring systems to predict their long-term piezoresistice sensing performances during their service life.

단결정 및 다결정 실리콘 압력센서의 온도특성 비교 (Comparison of Temperature Characteristics Between Single and Poly-crystalline Silicon Pressure Sensor)

  • 박성준;박세광
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.342-344
    • /
    • 1995
  • Using piezoresistive effects of single-crystal and poly-crystalline silicon, pressure sensors of the same pattern were fabricated for comparison of temperature characteristics. Optimum size and aspect ratio of rectangular sensor diaphragm were calculated by FEM. For polsilicon pressure sensor, polysilicon resistors of Wheatstone bridge were deposited by LPCVD to be used in a wide' temperature range. Polysilicon pressure sensors showed more stable temperature characteristics than single-crysta1 silicon in the range of $-20\sim125[^{\circ}C]$. To get low TCO (Temperature Coefficient of Offset), below $\pm$3 [${\mu}V/V/^{\circ}C$], it is needed for each TCR of piezoresistors to have a deviation within $\pm25[ppm/^{\circ}C]$ less than $\pm500[ppm/^{\circ}C]$ of resistors for polysilicon pressure sensor can result in low TCS(Temperature Coefficient of Sensitivity) of -0.1[%FS/$^{\circ}C$].

  • PDF

웨어러블 텍스타일 스트레인 센서 리뷰 (Wearable Textile Strain Sensors)

  • 노정심
    • 한국의류산업학회지
    • /
    • 제18권6호
    • /
    • pp.733-745
    • /
    • 2016
  • This paper provides a review of wearable textile strain sensors that can measure the deformation of the body surface according to the movements of the wearer. In previous studies, the requirements of textile strain sensors, materials and fabrication methods, as well as the principle of the strain sensing according to sensor structures were understood; furthermore, the factors that affect the sensing performance were critically reviewed and application studies were examined. Textile strain sensors should be able to show piezoresistive effects with consistent resistance-extension in response to the extensional deformations that are repeated when they are worn. Textile strain sensors with piezoresistivity are typically made using conductive yarn knit structures or carbon-based fillers or conducting polymer filler composite materials. For the accuracy and reliability of textile strain sensors, fabrication technologies that would minimize deformation hysteresis should be developed and processes to complement and analyze sensing results based on accurate understanding of the sensors' resistance-strain behavior are necessary. Since light-weighted, flexible, and highly elastic textile strain sensors can be worn by users without any inconvenience so that to enable the users to continuously collect data related to body movements, textile strain sensors are expected to become the core of human interface technologies with a wide range of applications in diverse areas.