• Title/Summary/Keyword: piezoelectric stack

Search Result 56, Processing Time 0.037 seconds

Vibration Characteristics of Piezoelectric Stack Transducers (적층 압전 변환기의 진동 특성)

  • Kim, Dae Jong;Kim, Jin Oh
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.66-68
    • /
    • 2014
  • The paper deals with the vibration characteristics of the stack transducers made of piezoelectric discs with different radius. Natural frequencies of the stack transducers were evaluated by finite-element analysis. The natural frequencies of the analysis results were compared with those of each piezoelectric disc, and their relations were investigated.

  • PDF

ELECTROMECHANICAL ANALYSIS OF PIEZOELECTRIC STACK ACTUATOR (적층 압전 액추에이터의 전기-기계적 특성 분석)

  • Ha, Gi Hong;Lee, Soo Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.374-378
    • /
    • 2014
  • The piezoelectric materials convert from mechanical energy to electrical energy. The piezoelectric materials are used in various engineering applications such as piezoelectric ultrasonic actuators. Since the piezoelectric coupling characteristics of the actuator systems should be considered at the initial design stage, it is essential to analyze the piezoelectric coupling characteristics of the ultrasonic actuators. In this study, we analyzed the electromechanical characteristics of piezoelectric stacked actuator using the equivalent circuit model with modal mass stiffness parameters. It was compared the admittance of piezoelectric stack actuators with the analytical circuit model and the finite element model. Also, the coupling coefficient of piezoelectric stack actuator was discussed according to the number of stacks of actuators.

  • PDF

Effects of piezoelectric material on the performance of Tonpilz transducer using finite element method (Tonpilz 트랜스듀서의 성능에 미치는 압전소재의 영향)

  • Seo, Jin-Won;Choi, Kyoon;Lee, Ho-Yong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.4
    • /
    • pp.139-144
    • /
    • 2016
  • Effects of the shape and size of the piezoelectric materials on the performance of tonpilz transducers were studied with a computer simulation using a finite element method (FEM). The diameter and height of the donut-shaped piezoelectric ceramics head mass were changed as variables. And the effect of the stack number was also investigated. Finally, if the piezoelectric ceramics were changed to a piezoelectric single crystal having high piezoelectric constants, how the performances especially, the output power and the TVR transmittance were affected was simulated by FEM. As a result, the output of transducer could be increased to 10 times of PZT-4 with replacement of relaxor single crystal of the same size.

A Study on Frequency Characteristics of a Bender Type High-Speed Piezoelectric Pneumatic Valve (벤더형 고응답 압전밸브의 주파수 특성에 관한 연구)

  • Yun, S.N.;Ham, Y.B.;Park, J.H.;Lee, S.S.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.14-18
    • /
    • 2012
  • Two kinds of piezoelectric actuator are applied to the valve for controlling the direction, the flow and the pressure of the fluid. One is a stack type piezoelectric actuator which has very fast response characteristics but very tiny displacement. The other is a bender type piezoelectric actuator which has also fast response characteristics but lower than the stack type one, and has longer displacement than the stack type one. So, the bender type piezoelectric actuator has advantage to apply to the valve for controlling a large amount of flow and fast on-off operating. In this study, the bender type piezoelectric pneumatic valve for color sorter is designed and fabricated. The new type high speed piezo valve with the both side supporting mechanism for high operating frequency and high reliability is discussed for separating the foreign body from the grains. Finally, the performance characteristics of a fabricated valve are analyzed and the frequency characteristics are also discussed for substituting the conventional type solenoid actuator.

Fabrication and Properties of Piezoelectric Transformer for Step-Down Voltage using Ceramic Stack Process (세라믹 적층공정을 이용한 강압용 압전변압기의 제작 및 특성)

  • Lee, Chang-Bae;Yoon, Jung-Rag
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.164-164
    • /
    • 2009
  • A multilayer piezoelectric transformer(MPT) for step-down voltage was made by ceramic stack process. And then, the characteristics of piezoelectric transformer, such as resonance frequency, matching impedance, electro-mechanical coupling coefficient, voltage gain, heat generation and efficiency, are analyzed. The piezoelectric transformer consists of a lead zirconate titanate ceramic with a high electromechanical quality factor. The piezoelectric transformer, with a multilayered construction in the thickness direction, was formed with dimensions 15mm long, 15mm wide and 5mm thick.

  • PDF

Analysis of a Rotation Stage with Cartwheel-type Flexure Hinges Driven by a Stack-type Piezoelectric Element (십자형 플렉셔 힌지를 갖는 압전소자 구동형 회전 스테이지의 해석)

  • Choi, Kee-Bong;Lee, Jae-Jong;Kim, Min-Young;Ko, Kuk-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.88-94
    • /
    • 2007
  • A flexure hinge-based compliant stage driven by stack-type piezoelectric elements has high precision motion but small operational range due to the characteristics of the piezoelectric element. Since the common flexure hinges can be broken by excessive deflection when the displacement is amplified by a high amplification ratio, a flexure hinge mechanism for large deflection is required. A cartwheel-type flexure hinge has an advantage of larger deflection compared with the common flexure hinges. This study presents a rotation stage with cartwheel-type flexure hinges driven by a stack-type piezoelectric element. The characteristics and the performance of the rotation stage are described by the terms of principal resonance frequency, amplification ratio of rotational displacement, maximum rotational displacement and block moment, in which the terms are analyzed by geometric parameters of the rotation stage. The analyzed results will be used as the guideline of the design of the rotation stage.

A Piezo-Driven Grating Scanner Based on Flexure Hinges for Measuring 3-Dimensional Microscopic Surface (3차원 미세형상 측정용 탄성힌지 기반 압전구동식 격자 스캐너)

  • Choi, Kee-Bong;Ten, Aleksey-Deson;Lee, Jae-Jong;Kim, Sung-Hyun;Ko, Kook-Won;Kwon, Soon-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.798-803
    • /
    • 2009
  • This paper proposes a grating scanner which is driven by a stack-type piezoelectric element. The mechanism of the grating scanner is based on flexure hinges. Using some constraints, the compliant mechanism is designed and then verified by Finite Element Analysis. The designed compliant mechanism is manufactured by wire electro-discharge machining, and then integrated with a stack-type piezoelectric element for actuation and a capacitance displacement sensor for measuring ultra-precision displacement. Experiments demonstrates the characteristics and the performances of the grating scanner using the terms of working range, resonance frequency, bandwidth and resolution. The grating scanner is applicable to a Moire interferometry for measuring 3-dimensional microscopic surface.

Position Control of Ultra-Precision Machine Tool Post using Piezoelectric Material(1) (압전 재료를 이용한 초정밀 가공기용 공구 위치 제어(1))

  • 김승한;송하성;송재욱;김의중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.162-166
    • /
    • 1996
  • This paper presents a position control of ultra-precision machine tool post using piezoelectric material. A stack-type piezoelectric actuator Is employed in a hinge-type tool holder. An assumed linear transfer function of the practical nonlinear plant is established through the comparison of transfer functions and step responses in the experiments and the simulations. Several types of feedforward/feedback controllers are designed via computer simulations using the assumed linear transfer function. The position tracking control experiments are undertaken to show the control efficiency of each controller.

  • PDF

Design of a New Dispensing System Featuring Piezoelectric Actuator (압전 작동기를 이용한 새로운 디스펜싱 시스템 설계)

  • Hung, Nguyen Quoc;Choi, Min-Kyu;Yoon, Bo-Young;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.739-745
    • /
    • 2006
  • This paper presents a novel type of hybrid dispensing head for IC fabrication and surface mount technology. The proposed mechanism consists of solenoid valve and piezoelectric stack as actuators, and provides positive-displacement and jet dispensing. The positive-displacement dispensing can produce desired adhesive amount without viscosity effect, while the jet dispensing can produce high precision adhesive amount. In order to determine the relationship between required voltage of the piezoelectric actuator and needle displacement, both static and dynamic analysis are undertaken, In addition, finite element analysis is performed in order to find optimal design parameters. Dispensing flow rate and pressure in the chamber are evaluated through fluid dynamic model.

Development of a High-Speed Electrohydraulic Servovalve System Using Stack-Type Piezoelectric Elements (적층식 압전소자를 이용한 고속 서보밸브 시스템의 개발)

  • 방영봉;이교일;임원규;주춘식;허재웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.733-736
    • /
    • 2003
  • This paper presents two systems of two-stage electrohydraulic servovalve with a nozzle-flapper pilot stage, which is controlled by stack-type piezoelectric elements. Two flapper moving mechanisms proposed in this research can compensate for the hysteresis problem and thermal expansion of the piezoelectric elements. The experimental results show that the first flapper moving mechanism has the frequency response of over 500 Hz and the second one has the response of over 600 Hz. And the first simplified servovalve system rising the first flapper moving mechanism has the frequency response of about 150 Hz, and the second system has the response of about 300 Hz at the supply pressure of 210 bar

  • PDF