• Title/Summary/Keyword: piezoelectric signal

Search Result 228, Processing Time 0.032 seconds

Finite Element Analyses on the Dynamic Behavior of Piezoelectric ZnO Nanowires and Their Piezoelectric Device Application Potentials (압전 산화아연 나노와이어의 동적거동 및 압전소자 응용성)

  • Lee, Woong
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.43-53
    • /
    • 2021
  • Dynamic behavior of piezoelectric ZnO nanowires is investigated using finite element analyses (FEA) on FE models constructed based on previous experimental observations in which nanowires having aspect ratios of 1:2. 1:31, and 1:57 are obtained during a hydrothermal process. Modal analyses predict that nanowires will vibrate in lateral bending, uniaxial elongation/contraction, and twisting (torsion), respectively, for the three ratios. The natural frequency for each vibration mode varies depending on the aspect ratio, while the frequencies are in a range of 7.233 MHz to 3.393 GHz. Subsequent transient response analysis predicts that the nanowires will behave quasi-statically within the load frequency range below 10 MHz, implying that the ZnO nanowires have application potentials as structural members of electromechanical systems including nano piezoelectric generators and piezoelectric dynamic strain sensors. When an electric pulse signal is simulated, it is predicted that the nanowires will deform in accordance with the electric signal. Once the electric signal is removed, the nanowires exhibit a specific resonance-like vibration, with the frequency synchronized to the signal frequency. These predictions indicate that the nanowires have additional application potential as piezoelectric actuators and resonators.

The electric field dependence of the resonance characteristics and piezoelectric constant of the PZT-PMNS ceramics (인가전계에 따른 PZT-PMNS 세라믹의 공진특성 및 압전정수의 변화경향 분석)

  • Oh, Jin-Heon;Park, Cheol-Hyeon;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1258-1259
    • /
    • 2008
  • In this paper, the variable tendency of the piezoelectric constant and resonance characteristics of the piezoelectric ceramics due to the electric field is studied. The practical application of piezoelectric ceramics is not only applied in field of small signal. For example, in case of an ultrasonic motor, 120 ${\sim}$ 130Vrms of driving voltage is needed. Therefore, to examine the characteristics of piezoelectric ceramics in large signal contributes to reducing the susceptibility to the multifarious application and securing the ease of the production of control circuit. These contributions may be connected to the expansion of industrial application. We fabricated disk-type piezoelectric ceramic samples by using conventional method and measured the resonance characteristics of these samples under from low to high voltage driving conditions. According to increasing the value of the input voltage, we measured the resonance frequency of the piezoelectric ceramic, and inquired into the cause of these phenomena.

  • PDF

Application assessments of concrete piezoelectric smart module in civil engineering

  • Zhang, Nan;Su, Huaizhi
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.499-512
    • /
    • 2017
  • Traditional structural dynamic analysis and Structural Health Monitoring (SHM) of large scale concrete civil structures rely on manufactured embedding transducers to obtain structural dynamic properties. However, the embedding of manufactured transducers is very expensive and low efficiency for signal acquisition. In dynamic structural analysis and SHM areas, piezoelectric transducers are more and more popular due to the advantages like quick response, low cost and adaptability to different sizes. In this paper, the applicable feasibility assessment of the designed "artificial" piezoelectric transducers called Concrete Piezoelectric Smart Module (CPSM) in dynamic structural analysis is performed via three major experiments. Experimental Modal Analysis (EMA) based on Ibrahim Time Domain (ITD) Method is applied to experimentally extract modal parameters. Numerical modal analysis by finite element method (FEM) modeling is also performed for comparison. First ten order modal parameters are identified by EMA using CPSMs, PCBs and FEM modeling. Comparisons are made between CPSMs and PCBs, between FEM and CPSMs extracted modal parameters. Results show that Power Spectral Density by CPSMs and PCBs are similar, CPSMs acquired signal amplitudes can be used to predict concrete compressive strength. Modal parameter (natural frequencies) identified from CPSMs acquired signal and PCBs acquired signal are different in a very small range (~3%), and extracted natural frequencies from CPSMs acquired signal and FEM results are in an allowable small range (~5%) as well. Therefore, CPSMs are applicable for signal acquisition of dynamic responses and can be used in dynamic modal analysis, structural health monitoring and related areas.

Single-Chip Controller Design for Piezoelectric Actuators using FPGA (FPGA를 이용한 압전소자 작동기용 단일칩 제어기 설계)

  • Yoon, Min-Ho;Park, Jungkeun;Kang, Taesam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.513-518
    • /
    • 2016
  • The piezoelectric actuating device is known for its large power density and simple structure. It can generate a larger force than a conventional actuator and has also wide bandwidth with fast response in a compact size. To control the piezoelectric actuator, we need an analog signal conditioning circuit as well as digital microcontrollers. Conventional microcontrollers are not equipped with an analog part and need digital-to-analog converters, which makes the system bulky compared with the small size of piezoelectric devices. To overcome these weaknesses, we are developing a single-chip controller that can handle analog and digital signals simultaneously using mixed-signal FPGA technology. This gives more flexibility than traditional fixed-function microcontrollers, and the control speed can be increased greatly due to the parallel processing characteristics of the FPGA. In this paper, we developed a floating-point multiplier, PWM generator, 80-kHz power control loop, and 1-kHz position feedback control loop using a single mixed-signal FPGA. It takes only 50 ns for single floating-point multiplication. The PWM generator gives two outputs to control the charging and discharging of the high-voltage output capacitor. Through experimentation and simulation, it is demonstrated that the designed control loops work properly in a real environment.

Enhanced Performance of PVDF Piezoelectric Speaker Using PVDF/ZnO Nanopillar Composites (PVDF/ZnO Nanopillar 복합재료를 이용한 압전필름 스피커의 성능향상)

  • Kwak, Jun-Hyuk;Hur, Shin
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.447-452
    • /
    • 2016
  • In this study, we fabricated and evaluated the performance of film speaker using PVDF/ZnO NP composite structure. PVDF piezoelectric films were fabricated and characterized by XRD and SEM. ZnO nanopillars were prepared by hydrothermal synthesis on prepared PVDF piezoelectric films. We analyzed and tested the acoustic signal characteristics of the piezoelectric film. In order to fabricate an acoustic structure with a wide frequency range from low to high frequency, we have fabricated various types of film speakers and investigated the frequency characteristics. As a result, the fundamental piezoelectric properties of PVDF show that the piezoelectric constant due to ZnO NP increases. And the overall acoustic signal level is also increased by 10% or more. We investigated frequency generation from 500 Hz to 10 KHz using different sizes with PVDF/ZnO NP composite film speaker.

A study on the design and control super-precision coarse and fine positioning apparatus (초정밀 조미동 위치결정기구의 설계 및 제어에 관한 연구)

  • 김재열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.18-23
    • /
    • 1995
  • The study was carried out to develope a precision positioning apparatus, consisting of DC servo motor and piezoelectric actuator. This system is composed of fine and coarse apparatus, measurement system and control system, Piezoelectric actuator is designed for fine positioning. Coarse positioning using lead screw is drived by DC servo motor. Control system output a signal from laser interferometer and microsense to amplifier of DC servo motor and piezoelectric actuator after digital signal processing(DSP). Resolution of this apparatus measure with laser interferometor and microsense

  • PDF

A Study on the Design and Control Super-Precision Positioning Apparatus (초정밀 위치결정기구의 제어성능 평가에 관한 연구)

  • 김재열;송찬일;곽이구;마상동;한재호;이승찬
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.56-62
    • /
    • 1999
  • We make a study of pricisioning apparatus that is used in the various industrial machine. The study was carried out to develope a pricision positioning apparatus, consisting of servo motor and piezoelectric actuator. This system is composed of fine and coarse apparatus, measurement system and control system. Piezoelectric actuator is designed for fine positioning. Coarse positioning using lead screw is drived by servo motor. Control system output a signal from laser interferometer and microsense to amplifier of servo motor and piezoelectric actuator after digital signal processing(DSP). Resolution of this apparatus measure with laser interferometor and microsense so, we can controlled positioning of one output by the coarse positioning in the system. Also we obtain the positioning resolution of 9nm in the system.

  • PDF

Design of Multi-Phase Shift Controller for Valveless PZT Pump (밸브리스 압전펌프 연동구동 제어기 설계)

  • 조정대;박경민;노종호;함영복;유진산
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1282-1285
    • /
    • 2004
  • The high voltage driving system with multi-phase shifter including piezoelectric actuators comprised a driving power unit for outputting the driving power by converting input alternate current into direct current, a frequency shifting unit for supplying the direct current power and shifting or generating a frequency, a high-voltage amplification unit for amplifying the input signal outputted from the driving power unit and the frequency shifting unit into a high-voltage signal, and a phase shifting unit for shifting the phase difference of the amplified signal applied to the high-voltage amplification unit and driving plural piezoelectric actuators sequentially. The results that the operating voltage was stable, the voltage loss ratio was low and the response velocity was fast could be obtained. An experiment on performance of the high voltage driving system with multi-phase shifter designed and manufactured as above described was conducted by using a piezoelectric pump having 3 sheets of round unimorph piezoelectric actuators laminated respectively in a rectangular case. It sucks any fluid by causing the first piezoelectric actuator to shift from the inlet porter side, the phase delay of 60$^{\circ}$ causes the second piezoelectric actuator to begin to shift, and the phase delay of 120$^{\circ}$ causes the third piezoelectric actuator to begin to shift. As a result of measuring each change in the outlet flow rate of the piezoelectric pump, it was shown that the frequency-flow rate characteristic, the voltage-flow characteristic, and the load pressure-flow rate characteristic were improved.

  • PDF

Advanced signal processing for enhanced damage detection with piezoelectric wafer active sensors

  • Yu, Lingyu;Giurgiutiu, Victor
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.185-215
    • /
    • 2005
  • Advanced signal processing techniques have been long introduced and widely used in structural health monitoring (SHM) and nondestructive evaluation (NDE). In our research, we applied several signal processing approaches for our embedded ultrasonic structural radar (EUSR) system to obtain improved damage detection results. The EUSR algorithm was developed to detect defects within a large area of a thin-plate specimen using a piezoelectric wafer active sensor (PWAS) array. In the EUSR, the discrete wavelet transform (DWT) was first applied for signal de-noising. Secondly, after constructing the EUSR data, the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used for the time-frequency analysis. Then the results were compared thereafter. We eventually chose continuous wavelet transform to filter out from the original signal the component with the excitation signal's frequency. Third, cross correlation method and Hilbert transform were applied to A-scan signals to extract the time of flight (TOF) of the wave packets from the crack. Finally, the Hilbert transform was again applied to the EUSR data to extract the envelopes for final inspection result visualization. The EUSR system was implemented in LabVIEW. Several laboratory experiments have been conducted and have verified that, with the advanced signal processing approaches, the EUSR has enhanced damage detection ability.

The Electric Field Dependence of the Resonance Characteristics and Piezoelectric Constant of the PZT-PMNS Ceramics (PZT-PMNS 세라믹의 공진특성 및 압전 정수의 전계의존성)

  • Oh, Jin-Heon;Lim, Kee-Joe;Kang, Seong-Hwa;Kim, Hyeon-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.179-180
    • /
    • 2008
  • In this paper, the variable tendency piezoelectric constant and resonance characteristics piezoelectric ceramics due to the electric field is studied. The practical application of piezoelectric ceramics is not only applied in field of small signal. For example, in case of an ultrasonic motor, $120{\sim}130Vrms$ of driving voltage is needed and that of an piezoelectric pump, $200{\sim}220Vrms$ of voltage is required. Therefore, to examine the characteristics of piezoelectric ceramics in large signal contributes to reducing the susceptibility to the multifarious application and securing the ease of the production of control circuit. These contributions may be connected to the expansion of industrial application. We fabricated disk-type piezoelectric ceramic samples by using conventional method and measured the resonance characteristics of these samples under from low to high voltage driving conditions. According to increasing the value of the input voltage, we measured the resonance frequency of the piezoelectric ceramic, and inquired into the cause of these phenomena.

  • PDF