• Title/Summary/Keyword: piezoelectric sensor and actuator

Search Result 158, Processing Time 0.029 seconds

Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • v.8 no.5
    • /
    • pp.433-447
    • /
    • 2011
  • The present paper addresses the nonlinear response of a FG square plate with two smart layers as a sensor and actuator under pressure. Geometric nonlinearity was considered in the strain-displacement relation based on the Von-Karman assumption. All the mechanical and electrical properties except Poisson's ratio can vary continuously along the thickness of the plate based on a power function. Electric potential was assumed as a quadratic function along the thickness direction and trigonometric function along the planar coordinate. By evaluating the mechanical and electrical energy, the total energy equation can be minimized with respect to amplitude of displacements and electrical potential. The effect of non homogenous index was investigated on the responses of the system. Obtained results indicate that with increasing the non homogenous index, the displacements and electric potential tend to an asymptotic value. Displacements and electric potential can be presented in terms of planar coordinate system. A linear analysis was employed and then the achieved results are compared with those results that are obtained using the nonlinear analysis. The effect of the geometric nonlinearity is investigated by using the comparison between the linear and nonlinear results. Displacement-load and potential-load curves verified the necessity of a nonlinear analysis rather than a linear analysis. Improvement of the previous results (by the linear analysis) through employing a nonlinear analysis can be presented as novelty of this study.

Study of Active Damping Boring Bar Using Piezoelectric Actuator for Small Boring Process (압전 액추에이터를 이용한 소구경 능동 방진 보링바 기초연구)

  • Guo, Yang-Yang;Hong, Jun-Hee;Song, Doo-Sang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.658-664
    • /
    • 2013
  • In this paper, we present a case study of vibration suppression based on the application of active damping to the small boring process of a boring bar with diameter below ${\Phi}12$. The proposed active damping system consists of an acceleration sensor for real-time monitoring of the vibration signal, a driver for phase control in a computer program, and piezoelectric actuators for damping. In this system, the vibration signals are detected by the acceleration sensor and sent to the computer as an input. The phase shift parameter of the natural frequency of the input signal is sent to the data acquisition board in the computer and calculated by the phase control program. This study confirmed the effectiveness of this damping system, and it opens up the possibility of the development of active damping systems for small boring processes.

An Attitude Control and Stabilization of an Unstructured Object using CMG Subsystem (자이로 구동장치를 이용한 공중물체의 자세제어 및 안정화)

  • Lee, Geon-Yeong;Gwon, Man-O
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.459-466
    • /
    • 2000
  • In this paper, we propose an attitude controller for an unstructured object using CMG(Control Moment of Gyro) subsystem, which has a stabilizer function. The CMG subsystem consists of one motor for spinning the wheel and the other motor for turning the outer gimbal. While the wheel of CMG subsystem is spinning at high speed, applying force to the spin axis of the wheel leads the torque about the vertical axis. We utilize the torque to control the attitude of object in this study. For the stabilizer function, in additiion, holding the load at the current position, the power applied to the gimbal motor of CMG will be cut, which result in the braking force to stop the load by gyro effect. However, due to the gear reduction connected to outer gimbal, slow load motion cannot generate the braking force. Thus, in this study, we are willing to make a holding force by applying control power to the gimbal motor from the signal of piezoelectric gyroscopic sensor that detected the angular velocity of the load. These two features are demonstrated in experiment, carrying a beam with crane. As a result, load was started to rotate by controlling gimbal positiion and was stopped by turning off the gimbal power. Moreover, slow movement of the load was also rejected by additional control with gyroscopic sensor.

  • PDF

Finite Element Modeling for Free Vibration Control of Beam Structures using Piezoelectric Sensors and Actuators (압전감지기와 압전작동기를 이용한 보구조물의 자유진동제어에 대한 유한요소 모형화)

  • 송명관;한인선;김선훈;최창근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.183-195
    • /
    • 2003
  • In this study, the method of the finite element modeling for free vibration control of beam-type smart structures with bonded plate-type piezoelectric sensors and actuators is proposed. Constitutive equations for the direct piezoelectric effect and converse piezoelectric effect of piezoelectric materials are considered. By using the variational principle, the equations of motion for the smart beam finite element are derived. The proposed 2-node beam finite element is an isoparametric element based on Timoshenko beam theory. Therefore, by analyzing beam-type smart structures with smart beam finite elements, it is possible to simulate the control of the structural behavior by applying voltages to piezoelectric actuators and monitoring of the structural behavior by sensing voltages of piezoelectric sensors. By using the smart beam finite element and constant-gain feed back control scheme, the formulation of the free nitration control for the beam structures with bonded plate-tyPe Piezoelectric sensors and actuators is proposed.

Experiment on Vibration control of Beam using Active Constrained Layer Damping Treatment (능동구속감쇠 기법을 이용한 보의 진동제어 실험)

  • Choi, Jin-Young;Kang, Young-Kyu;Kim, Jae-Hwan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.262-267
    • /
    • 2000
  • The flexural vibration of aluminum beams with active and passive constrained-layer damping has been investigated experimentally to design structure with maximum possible damping capacity. Piezoelectric film is used as sensor and piezoceramic as actuator for negative velocity feedback control. This paper shows the effectiveness of active constrained-layer damping treatment through experiment, and we have carried out an experiment to study effect of beam thickness.

  • PDF

Perspective on Ferroelectric Polymers Presenting Negative Longitudinal Piezoelectric Coefficient and Morphotropic Phase Boundary (강유전체 고분자의 음의 압전 물성 및 상공존경계(MPB)에 대한 고찰)

  • Im, Sungbin;Bu, Sang Don;Jeong, Chang Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.523-546
    • /
    • 2022
  • Morphotropic phase boundary (MPB), which is a special boundary that separates two or multiple different phases in the phase diagram of some ferroelectric ceramics, is an important concept in identifying physics that includes piezoelectric responses. MPB, which had not been discovered in organic materials until recently, was discovered in poly(vinylidene fluoride-co-trifluoroethylene (P(VDF-TrFE)), resulting from a molecular approach. The piezoelectric coefficient of P(VDF-TrFE) in this MPB region was achieved up to -63.5 pC N-1, which is about two times as large as the conventional value of -30 pC N-1 of P(VDF-TrFE). An order-disorder arrangement greatly affects the rise of the piezoelectric effect and the ferroelectric, paraelectric and relaxor ferroelectric of P(VDF-TrFE), so the arrangement and shape of the polymer chain is important. In this review, we investigate the origin of negative longitudinal piezoelectric coefficients of piezoelectric polymers, which is definitely opposite to those of common piezoelectric ceramics. In addition to the mainly discussed issue about MPB behaviors of ferroelectric polymers, we also introduce the consideration about polymer chirality resulting in relaxor ferroelectric properties. When the physics of ferroelectric polymers is unveiled, we can improve the piezoelectric and pyroelectric properties of ferroelectric polymers and contribute to the development of next-generation sensor, energy, transducer and actuator applications.

Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field

  • Arefi, M.;Rahimi, G.H.;Khoshgoftar, M.J.
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.427-439
    • /
    • 2012
  • The present paper deals with the analytical solution of a functionally graded piezoelectric (FGP) cylinder in the magnetic field under mechanical, thermal and electrical loads. All mechanical, thermal and electrical properties except Poisson ratio can be varied continuously and gradually along the thickness direction of the cylinder based on a power function. The cylinder is assumed to be axisymmetric. Steady state heat transfer equation is solved by considering the appropriate boundary conditions. Using Maxwell electro dynamic equation and assumed magnetic field along the axis of the cylinder, Lorentz's force due to magnetic field is evaluated for non homogenous state. This force can be employed as a body force in the equilibrium equation. Equilibrium and Maxwell equations are two fundamental equations for analysis of the problem. Comprehensive solution of Maxwell equation is considered in the present paper for general states of non homogeneity. Solution of governing equations may be obtained using solution of the characteristic equation of the system. Achieved results indicate that with increasing the non homogenous index, different mechanical and electrical components present different behaviors along the thickness direction. FGP can control the distribution of the mechanical and electrical components in various structures with good precision. For intelligent properties of functionally graded piezoelectric materials, these materials can be used as an actuator, sensor or a component of piezo motor in electromechanical systems.

Active Vibration Control of a Simply Supported Plate with Piezoelectric Sensors and Actuators - I. Theory (압전 센서와 액츄에이터를 이용한 단순지지 평판의 능동 진동제어 - I. 이론)

  • Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.25-39
    • /
    • 1992
  • Undesired vibratory motion of a simply supported plate is controlled with piezoelectric sensors and actuators. Appropriate dynamic equations of the sensor and actuator are derived and coupled with the dynamic equation of the plate for the construction of an active feedback vibration control system. Analytic solutions are obtained for amplitude response of the plate, reflecting the combined effect of external driving forces and piezoelectric control moments. Numerical examples are presented to illustrate the effectiveness of this approach for two types of external forces, i.e. a concentrated point load and a piezoelectric plate driver. Calculation results show that the sensors and actuators can be efficient tools to mitigate the sensitivity of the structure to external sources of vibration. The method investigated in this work is applicable to arbitrary external loading conditions and control algorithms.

  • PDF

Modal-based mixed vibration control for uncertain piezoelectric flexible structures

  • Xu, Yalan;Qian, Yu;Chen, Jianjun;Song, Gangbing
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.229-244
    • /
    • 2015
  • H-infinity norm relates to the maximum in the frequency response function and H-infinity control method focuses on the case that the vibration is excited at the fundamental frequency, while 2-norm relates to the output energy of systems with the input of pulses or white noises and 2-norm control method weighs the overall vibration performance of systems. The trade-off between the performance in frequency-domain and that in time-domain may be achieved by integrating two indices in the mixed vibration control method. Based on the linear fractional state space representation in the modal space for a piezoelectric flexible structure with uncertain modal parameters and un-modeled residual high-frequency modes, a mixed dynamic output feedback control design method is proposed to suppress the structural vibration. Using the linear matrix inequality (LMI) technique, the initial populations are generated by the designing of robust control laws with different H-infinity performance indices before the robust 2-norm performance index of the closed-loop system is included in the fitness function of optimization. A flexible beam structure with a piezoelectric sensor and a piezoelectric actuator are used as the subject for numerical studies. Compared with the velocity feedback control method, the numerical simulation results show the effectiveness of the proposed method.

Vibration suppression of active and semi-active flexible structures using a pseudo-sensor-output-freeback control (PSOF 제어를 이용한 능동과 반능동 유연 구조물의 진동제어)

  • 오동영;김영식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.432-437
    • /
    • 1997
  • In this paper, a pseudo-sensor-output-feedback(PSOF) control approach is applied to the active and semi-active systems for the vibration suppression of the flexible structures. This approach reduces the modeling error encounted in the output equation formulation and is easy to be implemented in practice. Experimental works are performed for the validation of theoretical predictions with a piezoelectric sensor and actuator bonded on the cantilever beam. The objective of this study is also to compare and analyze between active and semi-active systems. An algorithm based on the sliding mode control theory is developed and analyzed for the robustness to the modeling errors and parameter uncertainties.

  • PDF