• Title/Summary/Keyword: piezoelectric property

Search Result 115, Processing Time 0.026 seconds

Transient Response of Functionally Graded Piezoelectric Ceramic with Crack (균열이 있는 기능경사 압전 세라믹의 충격 특성에 관한 연구)

  • Jeong Woo Shin;Tae-Uk Kim;Sung Chan Kim
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.21-27
    • /
    • 2003
  • Using the theory of linear piezoelectricity, the dynamic response of a central crack in a functionally graded piezoelectric ceramic under anti-plane shear impact is analyzed. We assume that the properties of the functionally graded piezoelectric material vary continuously along the thickness. By using the Laplace and Fourier transform, the problem is reduced to two pairs of dual integral equations and then into Fredholm integral equations of the second kind. Numerical values on the dynamic stress intensity factors are presented to show the dependence of the gradient of material properties and electric loading.

Aging Effect of Bio-inspired Artificial Basilar Membrane with Piezoelectric PVDF Thin Film

  • Kim, Wan Doo;Park, Su A;Kim, Sang Won;Kwak, Jun-Hyuk;Jung, Young Do;Hur, Shin
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.292-296
    • /
    • 2015
  • Biomimetic artificial basilar membrane being a core part of artificial cochlear requires performance evaluation through aging test. To evaluate the aging properties of PVDF piezoelectric membrane used for artificial basilar membrane, its mechanical properties such as tensile strength and elastic modulus and piezoelectric property such as piezoelectric constant were measured. The aging test conditions and acceleration constants were calculated based on Arrhenius model. The changes in tensile strengths and elastic moduli measured were less than 10~20% after aging test equivalent for 10 years. The piezoelectric constants were decreased drastically to 80% of its initial value in the early stage of the aging test and expected to decrease slowly down to 65% over 10 years. The experimental results show the reliability of totally implantable novel artificial cochlear and will contribute its commercialization.

Piezoelectric and Dielectric Characteristics of PAN-PZT Ceramics with BaCO3Addition (BaCO3첨가량에 따른 PAN-PZI계 세라믹스의 압전 및 유전특성)

  • 박타리;이동균;최지원;강종윤;김현재;윤석진;고태국
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.356-360
    • /
    • 2002
  • The piezoelectric properties of $0.05Pb(Al_{0.5}Nb_{0.5})O_3-0.95Pb(Zr_{0.52}Ti_{0.48})O_3+0.7wt%Nb_2O_5+o.5wt%MnO_2$ ceramics with the additive of BaCO$_3$were investigated. As the addition of BaCO$_3$increased from 0 to 0.4 wt%, the dielectric constant ($\epsilon^T _{33}$), piezoelectric constant ($d_33$), electromechanical coupling factor ($k_p$), and mechanical quality factor ($Q_m$) increased, while the dielectric loss ($tan\delta$) decreased. The highest piezoelectric and dielectric properties were observed at $1200^{\circ}C$ of the sintered temperature with 0.4 wt% of $BaCO_3$, and the properties of $d_33$, $k_p$, and $Q_m$ were 339 pC/N, 60% and 1754, respectively.

Power Generating Characteristics of Zinc Oxide Nanorods Grown on a Flexible Substrate by a Hydrothermal Method

  • Choi, Jae-Hoon;You, Xueqiu;Kim, Chul;Park, Jung-Il;Pak, James Jung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.640-645
    • /
    • 2010
  • This paper describes the power generating property of hydrothermally grown ZnO nanorods on a flexible polyethersulfone (PES) substrate. The piezoelectric currents generated by the ZnO nanorods were measured when bending the ZnO nanorod by using I-AFM, and the measured piezoelectric currents ranged from 60 to 100 pA. When the PtIr coated tip bends a ZnO nanorod, piezoelectrical asymmetric potential is created on the nanorod surface. The Schottky barrier at the ZnO-metal interface accumulates elecntrons and then release very quickly generating the currents when the tip moves from tensile to compressed part of ZnO nanorod. These ZnO nanorods were grown almost vertically with the length of 300-500 nm and the diameter of 30-60 nm on the Ag/Ti/PES substrate at $90^{\circ}C$ for 6 hours by hydrothermal method. The metal-semiconductor interface property was evaluated by using a HP 4145B Semiconductor Parameter Analyzer and the piezoelectric effect of the ZnO nanorods were evaluated by using an I-AFM. From the measured I-V characteristics, it was observed that ZnO-Ag and ZnO-Au metal-semiconductor interfaces showed an ohmic and a Schottky contact characteristics, respectively. ANSYS finite element simulation was performed in order to understand the power generation mechanism of the ZnO nanorods under applied external stress theoretically.

The Effects of Post-Treatments for Wet Spun PVDF on the Piezoelectric Property (습식방사 된 PVDF 섬유의 후 처리를 통한 결정구조의 변화)

  • Yu, Seung Mi;Oh, Hyun Ju;Hwang, Sang-Kyun;Chung, Yong Sik;Hwang, Hui Yun;Kim, Seong Su
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.123-128
    • /
    • 2013
  • The PVDF (polyvinylidene fluoride) fibers were prepared using the wet spinning processing. To improve ${\beta}$-phase crystalline which closely related piezoelectric property PVDF wet spun fibers conducted post treatment. Post treatment is consisted of heat stretching and annealing process. The heat stretching and annealing conditions were controlled by changing temperature between glass transition temperature and melting temperature. From these experimental data, the resulting crystal structure of the ${\beta}$-phase crystalline was confirmed by FT-IR and XRD experiments. From these analysis results, optimum stretching and annealing conditions of the wet spun PVDF fibers were founded to increase high ${\beta}$-phase crystalline. Furthermore results showed that thermal processing had a direct effect on modifying the crystalline microstructure and also confirmed that heat stretching and annealing could increase the degree of crystallinity and ${\beta}$-phase crystalline. Finally, piezoelectric constant ($d_{11}$) of the post heat treated PVDF fibers reinforced composite were measured to investigate the feasibility for the sensing materials.

Piezoelectric and Strain Properties of Lead-free (Bi1/2Na1/2)TiO3-Ba(Cu1/3Nb2/3)O3 Ceramics (비납계 (Bi1/2Na1/2)TiO3-Ba(Cu1/3Nb2/3)O3 세라믹의 압전 및 변위 특성)

  • Ryu, Jung-Ho;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.628-633
    • /
    • 2011
  • Studies on lead-free piezoelectrics have been attractive as means of meeting environmental requirements. We synthesized lead-free piezoelectric $(Bi_{1/2}Na_{1/2})TiO_3-Ba(Cu_{1/3}Nb_{2/3})O_3$ (BNT-BCN) ceramics, and their dielectric, piezoelectric, and strain behavior were characterized. As BCN with a tetragonal phase was incorporated into the rhombohedral BNT lattice, the lattice constant increased. A small amount of BCN increased the density and dielectric constant forming the complete solid solution with BNT. However, BCN above 10 mol% was precipitated into a separate phase, and which was detected with XRD. In addition, EDX measurement revealed that Cu in BCN was not distributed homogeneously but was accumulated in a certain area. A lower density with a large amount of BCN was attributed to the nonsinterable property of BCN with large tetragonaliy. The dielectric constant vs the temperature change and the strain vs the electric field indicated that the ferroelectric property of BNT was diminished and paraelectric behavior was enhanced with the BCN addition. BNT-7.5BCN showed a 0.11% unimorph strain with a 9.0 kV/mm electric field with little hysteresis.

Green Energy Harvester using a Piezoelectric Regenerated Paper (압전종이를 이용한 그린에너지 하베스터)

  • Koh, Hyun-Woo;Kwon, Yeon-Ho;Yun, Gyu-Young;Kim, Joo-Hyung;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.198-201
    • /
    • 2009
  • Due to piezoelectric property of regenerated cellulose paper, a green energy harvester using an electro-active paper (EAPap) was studied. In order to design the green energy harvester, we simulated cymbal type energy harvesting structures for single and multi-stacked layers of EAPap films. From the simulation, the optimized material orientation, thickness of harvesting structure was selected. By measuring of the induced output voltage by applying stress on energy harvester will be explained in detail. Therefore we propose the feasibility of the nature-friendly piezoelectric EAPap as a new green energy harvesting material.

  • PDF

A Wireless Identification System Using an Efficient Antenna Based on Passive Surface Acoustic Wave(SAW) Devices

  • Chang, Ki-Hun;Lee, Woo-Sung;Yoon, Young-Joong;Kim, Jae-Kwon;Park, Joo-Yong;Burm, Jin-Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.12-16
    • /
    • 2007
  • A UHF band wireless identification system based on passive surface acoustic wave(SAW) devices is presented in this paper. SAW ID tags were fabricated on Y-Z $LiNbO_3$ piezoelectric substrate with a good electro-mechanical coupling property. To reduce degradation of the antenna performance associated with the piezoelectric materials, an efficient design of the SAW RFID antenna is introduced. By measuring the parameters of the SAW ID tag, the performance of the antenna was tested by experimentation.

Development of Ultrasonic-Optical Fiber Sensor and its Applications (초음파-광섬유 센서의 개발과 그 응용)

  • Oh, Il-Kwon;Lim, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.169-174
    • /
    • 2006
  • The outstanding mechanical property of optical fiber and the merits of acoustic emission sensing technique are unified for novel sensor system. The generated ultrasonic wave from piezoelectric generator are propagated along the optical fiber and also sensed. The propagated wave can be influence by external pressure on the optical fiber or environmental circumstance. The optical fiber sensor using ultrasonic wave has advantages compare with existing sensor system. In this study, the sensitivity of the optical fiber sensor is experimentally investigated. As the applications of the optical fiber sensor system using piezoelectric ultrasonic waves, the point load on the optical fiber is measured and the monitoring system for the void fraction of two phase flows is developed. The experimental results show the linear relationship between sensed voltage and void fraction.

  • PDF

Piezoelectric and Acoustic Properties of Ultrasonic Sensor Using 2-2 Piezocomposites

  • Lee, Sang-Wook;Nam, Hyo-Duk;Ryu, Jeong-Tak;Kim, Yeon-Bo
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.215-218
    • /
    • 2005
  • We have investigated on the development of 2-2 piezocomposites that have better piezoelectric activity and lower acoustic impedance than those of conventional piezoceramics. In this study, we have investigated the piezoelectric and acoustic properties of 2-2 piezocomposites sensor which were fabricated using dice-and-fill technique for the different volume fraction of PZT. The resonance characteristics measured by an impedance analyzer were similar to the analysis of finite element method. The resonance characteristics and the electromechanical coupling factor were the best when the volume fraction PZT was 0.6. It also showed the highest result from the standpoint of sensitivity, bandwidth and ring-down property and so on at the same condition. The specific characteristics shows that the 2-2 piezocomposites turned out to be superior to the ultrasonic sensor composed by single phase PZT.

  • PDF